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Executive Summary 
Dedicated bus lanes are those restricted to only buses either permanently or during certain hours 
of the day. The lanes are usually indicated with “Bus Only” posted signs and pavement markings 
along the route with specific regulations. These exclusive lanes provide opportunities for buses to 
bypass traffic congestion and avoid vehicular conflicts in mixed travel lanes to improve bus service 
reliability. Implementing these lanes can help increase the attractiveness of bus transit to 
prospective public transit users, thereby encouraging a mode shift from using single-occupancy 
vehicles to buses. 

This report pres^ents the findings of a study that aimed to determine the impacts on the 
performance of transit buses as well as general traffic (transit and non-transit) performance after 
installing dedicated bus lanes (DBLs) at selected corridors in Washington, DC. Furthermore, a 
model for predicting bus travel times operating on such lanes was also developed using Artificial 
Neural Networks (ANN). 

DDOT implemented a bus priority program on selected segments in the District of Columbia 
leading to the installation of red-painted DBLs on segments of H Street (NW) and I Street (NW). 
Hence, a “before” and “after” scenario approach was used to evaluate the impacts on the 
performance of transit buses and intersection performance on segments with DBLs. DDOT 
installed bus lanes by June 2019 on the segment of H Street (NW) between 19th Street (NW) and 
13th Street (NW) and the segment of I Street (NW) between 21st Street (NW) and 13th Street 
(NW). 

The matrices containing the variables required to conduct the studies were developed based on 
visual observation of intersection vehicular turning movement count (TMC) data, as well as the 
Automatic Vehicle Location (AVL) data for transit buses that were provided by Washington 
Metropolitan Area Transit Authority (WMATA) at the following five locations: 

1. H Street and 14th Street, NW 

2. H Street and 17th Street, NW 

3. I Street and 15th Street/ Vermont Avenue, NW 

4. I Street and 16th Street, NW 

5. I Street and 17th Street, NW 

AVL data were obtained from WMATA for the “before” months of May 2019 and June 2019 and 
the “after” months of September 2019 and October 2020 for bus routes 7Y, 32, 30S, and 30N. 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  1 



 

    

            
            

              
          

              
            

                 
            

         
            

           
            

            
       

                
              

                  
                

             
            

               

     

    

    

    

    

    

    

    

These routes service the five locations. Non-intrusive video data at these intersections were 
reviewed to observe the compliance of buses and other passenger vehicles while using the DBLs at
the intersections, in addition to vehicular TMCs. It was found that the average bus travel time on 
the segments generally decreased after the installation of these DBLs. 

From field observations, TMC data and AVL data, relevant information for the analysis were 
obtained for the AM (7:00 AM–9:30 AM) and PM (4:00 PM–6:30 PM) peak periods before and
after the installation of bus lanes. PetraPRO software was used to analyze the AM and PM TMCs, 
while Synchro 10 Simulation software was used to analyze the intersection operations, thereby 
obtaining the pertinent measures of effectiveness (MOE) such as approach delays and control 
delays (that determine the quality of traffic performance) at all intersections under both scenarios. 
Dependent t-tests were used for both measures to observe statistically significant differences for 
the before and after MOEs. Overall, statistically significant decreases in the approach and control 
delays were observed (at a 5% level of significance), signifying that vehicles experienced lower 
delays while traveling on the study intersections/segments. 

The results of the multiple regression analysis showed that the length of the route between two 
serviced bus stops had the highest correlation with the travel time of the buses while the percentage
of buses using the bus lane (or the rightmost lane of the corridors when the bus lanes were not 
installed) had the lowest correlation. Bus direction also had a negative correlation with travel time. 

A summary of the input-target correlation, which is the measure of how the transit bus travel time
(dependent or target variable) is correlated with varying independent variables (inputs), along with
the measure of the probability (p-value or level of significance) is presented in Table 1. 

Table 1. Inputs-Target Correlations 

Inputs Correlation p-value 

L (X1) 0.267 0.000 

DT (X2) 0.075 0.000 

BD (X3) -0.037 0.023 

BL (X4) 0.033 0.182 

P (X5) 0.026 0.042 

BC (X6) -0.018 0.743 
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The coefficient of determination was 0.1. The coefficient of determination is the variation in the 
dependent variable explained by the set of independent variables. The multiple regression equation 
for the travel time was obtained as: 

TT = 53.97 + 0.04L + 0.24DT – 8.32BD + 3.97BL + 6.2P + 0.03BC 

An ANN model was also developed to predict buses’ travel times using dedicated bus lanes. The 
analysis used an approximation method in the Neural Designer software in order to find an 
underlying function that explains the relationships between the independent variables and the 
dependent variable (namely, bus travel time). Hence, the goal of the approximation method for 
this research was to find the model that yielded the lowest error in predicting travel time. 

For the prediction of bus travel time on segments with or without bus lanes, a minimum of 1,000 
bus events (7Y, 32, 30S, and 30N) were used in the ANN model. ANN models are highly data-
dependent and predict the outcomes by analyzing known data points. The independent variables 
included length of the route, average dwell time, bus travel direction, presence of bus lane, peak 
period, and the average percentage of buses using the rightmost lane (before) or bus lanes (after), 
while travel time was the dependent variable. 

The project team documented the initial and final errors (training, selection, and testing) from the
neural network training process. From the results, the approximation error metric (normalized 
squared error) for the testing dataset was found to be 0.97 (which is lower than the training error 
of 0.98 and selection error of 0.99). This indicates that the ANN model was predicting bus travel 
times based on unknown data with great accuracy. 

The results of the analyses indicate that buses, as well as non-transit vehicles, generally experienced
lower delays (resulting in better traffic flow) at all five study intersections. Hence, better traffic 
flow was observed when the bus lanes were present on the study segments. Transit buses’ 
compliance with the dedicated bus lanes did not appear to affect the travel time of the buses when
bus lanes were present. For future studies, additional analyses using data from additional segments
with DBLs could be used to validate the models in addition to evaluating the benefits and 
limitations of such lanes. Moreover, the ANN model could be incorporated into future predictive 
models used by WMATA to provide patrons with travel time information. Such implementation 
can be beneficial to not only improve WMATA’s bus service and reliability but also mitigate 
general traffic (transit and non-transit) operational delays. 
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1. Introduction 
One of the main goals of public transit agencies is to provide patrons with the best services for 
them to plan their commute and get to their destinations on time. Hence, these agencies strive to 
improve their services by continuously evaluating best practices for better reliability and efficiency 
of their infrastructure. As for transit buses, technology has enabled the real-time tracking of buses 
and the prediction of approximate arrival times at bus stops with improved accuracy. Such efforts 
help public bus riders plan their trips without needing to rely on their personal vehicles for 
commuting. Despite these efforts, unforeseeable factors—including traffic congestion, roadway 
conditions, and inclement weather—tend to affect the efficiency of public transit services. 
Inaccuracies in the prediction of transit service travel times and arrival times may decrease patrons’ 
perceptions of efficient and improved transit service. 

One method that has been adopted by bus services to improve travel times and bus transit reliability
is the implementation of designated bus lanes (DBLs). Designated bus lanes are those restricted 
to buses either permanently or during certain hours of the day. They are usually indicated by “Bus 
Only” signs posted along the route with specific regulations, and/or the lanes are painted red. 
DBLs allow buses to bypass traffic congestion and avoid vehicular conflicts in mixed travel lanes 
which helps to improve bus service reliability.1 Implementing these lanes can help increase the 
attractiveness of bus transit, thereby encouraging the mode shift from using single-occupancy 
vehicles to buses.2 

On the other hand, the installations of DBLs may disrupt existing traffic patterns, which may 
result in delays and violations by other vehicles. These violations may include deliberately traveling
in bus lanes (by other vehicle types), right turns in front of buses, and parking in bus lanes, among
others. These traffic violations may result in delays and obstruct bus operations, impacting the 
performance of the roadway and potentially creating safety issues.3 

Siddique and Khan4 conducted a study to investigate the capacity of Bus Rapid Transit (BRT) 
corridors in Ottawa, Canada. The study focused on the throughput of transit buses under 
prevailing conditions and compared it to the dynamic traffic microscopic analysis incorporating 
2021 traffic conditions. The results showed that in saturated conditions with interference from 
other road users including turning vehicles at intersections, the average speed dropped by 75%
while total bus delays and bus travel time increased by 135% and 96%, respectively. However, they 
noted that the bus delays and increased dwell times could be due to the manual fare collection and 
operation of high-floor buses. However, the research did not assess the control delays of vehicles 
in individual lane groups at the intersections where the bus lanes were present. 

In 2014, Chen et al. investigated the interactions between the general traffic flow and buses 
operating in exclusive bus lanes.5 The researchers found that there was a traffic saturation reduction 
of 16% with a 17% increase in bus travel time. However, the study was focused on only one BRT 
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corridor and was not conducted for two scenarios (that is, it did not compare the scenarios before
and after the implementation of BRT). 

While implementation of the bus priority programs or dedicated bus lanes show that there are 
desirable and detrimental effects on the efficiency of the infrastructure, a study in Washington, 
DC has not been conducted to assess the operational logistics of such lanes. In 2019, a Bus Priority
Program was implemented in the District of Columbia along the corridors of H Street (NW) and
I Street (NW). This program consists of the installation of bus lanes and other street design 
improvements on different segments of the city.6 Consequently, this research seeks to evaluate the 
impacts on the performance of transit buses and intersection performance on corridors with DBLs
in Washington, DC. A “before” and “after” approach will be used to compare the measures of 
effectiveness at all intersections. 

While simulations have been used to evaluate the measures of effectiveness for exclusive bus lanes, 
an actual study considering segments with and without such lanes has not been conducted in 
Washington, DC. This research employs a “before” and “after” approach to study the impact of 
DBLs in the District of Columbia. In addition, the team also used ANNs to predict the transit 
bus travel times for buses operating on networks with similar lanes in urban areas similar to DC. 
Most studies consider the average intersection delay, which is a measure of effectiveness used to 
interpret the level of service of an intersection. In this research, overall intersection control delays, 
as well as approach delays, will be analyzed to determine the impacts of implementing DBLs. The 
outcomes and the methodology of this study can be adopted and or/ modified by WMATA to 
significantly improve the prediction of bus arrival times, thereby increasing the reliability of public
transportation for patrons. 
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2. Literature Review 
2.1 Public Transportation in the United States 

The popularity of public transportation as an alternative to personal vehicles in the United States 
came about in the 1970s following a collection of factors which included an increase in traffic 
congestion, pollution, and rising costs of car ownership.7 Today, the public transportation system 
includes any generally accessible and publicly funded means of transport such as bus, rail, ferry,
and airline transportation services. Although public transportation has been made available in most
of the major cities in the US, only a few maintain an extensive public transit network.8 

Currently, conventional or commuter buses, bus rapid transit, and intercity buses are the three 
most widespread bus service types in the United States. The hours, service frequency, and routes 
taken by these bus services are determined by the patrons’ needs with the primary aim of providing 
accessibility, making them a rather popular option for commuters.9 

The American Public Transportation Association (APTA) states that every dollar invested in 
public transportation generates $5 in economic returns, every $1 billion invested in public 
transportation invariably creates approximately 50,000 jobs and every $10 million of capital 
investment in public transportation results in increased business sales of approximately $30 
million.10 

Public transportation has been described as an efficient and eco-friendly alternative to private 
vehicle ownership, primarily because it enables a greater number of people to travel to various 
places in fewer vehicles, thus reducing traffic congestion and lowering the emissions of greenhouse 
gases.11 The US Department of Transportation has reported that US transit buses emit an 
estimated 33% lower greenhouse gas emissions per passenger mile than an average US single-
occupancy vehicle.12 Furthermore, public transportation increases passenger safety. Several studies 
by APTA show that the use of public transportation reduces a person’s risk of being involved in a 
motor vehicle accident by up to 90%.13 This could be attributed to the level and regularity of public 
vehicle maintenance as well as the training and enforced driving habits of public transit drivers.14 

Most cities and suburbs in the United States were built after the 1950s, just as passenger cars 
reached the height of their popularity among the general populace and became the dominant mode
of transportation. Consequently, many US cities have roads that are largely favorable to smaller-
sized vehicles, making it difficult to serve such areas with public transportation, nevertheless, its 
convenience ensures it remains a popular mode of transportation.15 
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2.2 Advantages of the Public Transport System 

The Washington Metropolitan Area Transit Authority (WMATA) is a tri-jurisdictional 
government agency that operates transit services in the Washington Metropolitan Area and 
receives contributions to its operational costs from the various cities and counties in the District of
Columbia, the state of Maryland, and the Commonwealth of Virginia (DMV) area. 

WMATA operates under three distinct brand names to signify its different modes of service. 
Metrorail, under which it provides rapid transit services; Metrobus, under which it provides fixed-
route bus services; and MetroAccess, which provides transportation assistance to patrons with 
disabilities. Metrobus consists of a fleet of approximately 1,580 buses which serve over 11,500 bus
stops in the DMV area.16 In addition, a separate bus system known as the DC Circulator operates
in the downtown area and collaborates with WMATA in a public-private partnership bus system. 
The DC Circulator and the Metrobus are the two main options for bus commuters and provide 
services to a wide range of locations within DC and the larger DMV area. Figure 1 shows a 
WMATA Metrobus that operates in the District of Columbia-Maryland-Virginia region. 

Figure 1. Photograph of a WMATA Metrobus 

Public transportation is the most convenient way of moving around Washington, DC; however, 
to curb the spread of COVID-19 in 2020, Metrobus underwent several changes. Initially, as part 
of its Pandemic Flu Plan, Metrobus had a reduction in its hours of service, and buses operated 
according to the Saturday supplemental schedule throughout the week.17 Following an increase in 
COVID-19 cases in the DMV, stricter measures were initiated and Metrobus further reduced its 
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hours of operation. By then, the focus of WMATA had shifted to using public transportation as 
a means to support essential travel only, and bus operators were granted the authority to bypass 
bus stops if their vehicles had reached capacity in order to ensure social distancing in the vehicles.18 

These and other steps taken by Metrobus in the DMV highlight the continuous, though limited, 
availability of public transportation in the DMV area even during a pandemic. 

As a result, while public transportation in the United States reportedly carried 34 million 
passengers a day despite significant increases in vehicle ownership in 2019,19 these numbers 
significantly declined in 2020 due to the impacts of extensive quarantines and social distancing 
policies brought on as a result of the COVID-19 pandemic.20 However, there has been a significant 
change in the numbers in recent months. While passenger vehicle miles traveled fell to 
approximately 40% of pre-pandemic levels in Washington, DC in 2020, it increased to 
approximately 90% (of the norm) in 2021. Nevertheless, public transit patronage is still 
comparatively low during weekdays.21 

2.3 Issues Affecting the Bus Transit System 

There have been numerous improvements to public transportation over the years that have resulted
in increased patronage. Nevertheless, the system still encounters issues that make it a backup 
option or a last resort, especially for patrons with other options. Significant challenges include 
overcrowding, delays in arrival times, insufficient accessibility, longer commute times, and overall 
commute costs.22 

Further, studies conducted by APTA indicate that approximately 45% of Americans do not have 
access to public transportation.23 The rapid expansion of housing infrastructure development away
from city centers is one of the main circumstances contributing to the uneven distribution of public
transportation in the United States. Thus, the prevalence of housing communities situated at a 
great distance from downtown areas without significant public transportation access invariably 
leads to a heightened dependence on private vehicle ownership.24 

On the other hand, public transportation services at city centers deal with challenges such as a 
consistent increase in patronage, particularly during peak hours. This leads to significant levels of 
overcrowding on buses, in which case riders become subjected to extensive periods of standing. Li 
and Hensher conducted a study on public transport crowding in some developed countries and 
discovered that overcrowding was prevalent in many public transit systems despite the many 
interventions implemented by transport authorities in order to monitor and curb it. Their findings 
suggested that apart from the discomfort related to standing for long periods, riders reported 
experiencing physical exhaustion, stress, health concerns, less privacy, and overall frustration.25 

Many of these issues are even more significant now due to the ongoing COVID-19 pandemic and
the move to more socially distant habits. These issues are more than likely contributing factors 
which impact riders’ preference for other modes of transportation (private vehicles, Uber, etc.). 
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Improvements in public transportation over the years have involved the application of technology 
to increase the efficiency and effectiveness of the sector thereby increasing rider satisfaction and 
patronage. Automatic vehicle location (AVL) technology has been one of the many technological 
advancements and is used specifically to deliver bus arrival prediction times by providing up-to-
date real-time bus location. A study by Arhin et al. in 2013 to assess the reliability of transit buses 
in Washington, DC, indicated an overall performance of 75% with an average deviation of 2 to 5 
minutes from the predicted arrival times. The results were consistent with WMATA’s two-
minute-early and seven-minute-late window for bus arrival times. However, the data from the 
study revealed that about 82% of the bus arrival times did not meet the general transit industry 
threshold.26 Bus service reliability, however, is important for increased ridership, retention, and 
overall customer satisfaction. 

One other major reason for rider dissatisfaction with public transportation is delayed commute 
times, which can be attributed to the contradictions in the predicted and actual arrival times of 
buses. A combination of factors, including traffic congestion, lower speed limits, traffic signal 
delays, and multiple passengers alighting or embarking along a bus route, can affect bus arrival 
times. A report by the District Department of Transportation (DDOT) on the automated 
enforcement of bus lanes and zones in 2017 stated that the average bus speed through downtown 
DC was less than 5 mph.27 A study in 2016 evaluated bus travel time control strategies along routes
with signalized intersections and concluded that buses traveling below the recommended segment 
speed as a result of delays and restrictions from signalized intersections experienced considerably 
higher roundtrip travel times.28 

Traffic congestion in the United States for the year 2018 led to an average loss of 97 hours at an 
average cost of $1,348 per driver, totaling $87 billion.29 This amount is estimated to increase to 
about $186 billion by 2030. Washington, DC, was identified as the third most congested city in 
the United States, with drivers spending about 102 hours in traffic per year. Congestion is more 
common in cities and urban areas with residential settlements in the outskirts or suburbs. 
Businesses or workplaces, on the other hand, are within town centers.30 This situation leads to a 
heavy flow of traffic in one direction at any given time when people have to get to work and 
commute back home, leading to traffic congestion. The attempts of city and transport officials to 
designate bus-only lanes have not been entirely effective, because buses remain subjected to traffic 
congestion like other vehicles, especially during peak times when other vehicles ignore the 
restrictions of DBLs and utilize them as well. The effect of signalized intersections, though rather 
small, has been found to add up to a notable benefit, particularly on longer routes with more 
signalized intersections. A study conducted by Albright and Figliozzi found that there was an 
average bus travel time increase of 8 to 26 seconds per intersection on a bus route if the intersection 
was signalized.31 In a research project that investigated the variability of time in public transport
travel, results showed that travel time variation increased by up to 22% for each added intersection
per kilometer.32 Figliozzi and Feng discovered that for each stop sign on a bus corridor, an average
of 12 to 16 seconds was added to bus travel time while left and right turns at intersections increased 
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bus travel time by an average of 5 to 38 seconds.33 Mazloumi, Currie, and Rose determined that 
the number of bus stops along a route had an impact on bus travel time variability, especially in 
the morning peak hours. The study further showed that the longer length of the route along with
the higher number of bus stops affected the bus arrival and departure times and thereby increased 
the total bus travel time per commuter trip.34 

Nevertheless, an issue of note to be addressed is that of the affordability of public transportation 
seeing how the price of a commute is a major factor that makes public transportation a favorable 
alternative to private vehicle ownership. Usually, public transportation offers more affordable 
pricing for getting around. This is especially the case in urban areas where riders are traveling 
shorter distances. If a rider would need two or more transfers to get to their destination, which in 
most cases includes different public transport options, the commute becomes costly in terms of 
both time and money. In addition, where riders had to wait for up to 30 minutes to access the next 
ride to continue their trip, they chose to use a different mode of transportation, preferably auto 
vehicles.35 Fare integration has also been studied to further understand its potential impacts on 
transit ridership. A study on the effect of fare integration on travel behavior and transit ridership 
by Sharaby and Shiftan found that introducing a single fare system and providing free transfers to 
other buses along other routes led to a 25% increase in bus transit ticket sales, a 7.7% increase in 
passenger trips, and an 18.6% increase in bus boarding.36 These findings suggested that the 
reduction or consolidation of fares into a single ticket purchase and free transfers for riders who 
had to use more than one bus on their commute increased rider patronage of the bus transit system. 

2.4 Strategies to Improve the Bus Transit System 

Over the years, there have been several additions to improve public transportation service to 
patrons in areas where it is widely used. Designated bus lanes, AVL technology, improved 
facilities, traffic management, and faster boarding at stops, among other measures, are used to 
enhance the efficiency of bus transit systems, address the concerns of riders, and attract more 
patronage. 

Some studies have shown that designated bus lanes tend to decrease bus delay times by about 10%.
A study conducted in New York indicated that after the introduction of designated and/or 
dedicated bus lanes, bus delay reduced from 76% to 42%, and rider patronage increased by 10%. 
In other areas within the United States, rapid bus transit services were supported by the 
introduction of two-lane busways on highways and freeways.37 

In some other areas, traffic signal priority for buses has been implemented as an approach to reduce
bus service delays and make it more appealing to riders. Through the years, two common types of 
systems have been used. The first involves a pre-installed electronic communications mechanism 
that allows the bus driver to advance the traffic signal cycle to green so they can pass through the 
intersection in cases where they need to maintain the bus schedule. The second system uses real-
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time bus tracking (AVL) technology combined with an advanced radio communications system
that enables a computerized procedure to ascertain the position of the bus in relation to its schedule
and then controls traffic signals to give buses priority as and when required.38 

A study by Estrada et al. proposed a dynamic bus control model that used AVL data at stops to 
control bus speeds and possibly control signalized intersections by extending the green light phase
for buses with significant delays. The simulated model considered passenger travel time, operating 
costs, and bus travel time variability and resulted in reduced total system cost for both the agency 
and the user (by 15–40%) and reduced bus time variability (by 53–78%).39 

The overall satisfaction with the service provided is vital to retaining regular riders and attracting 
new ones. Enhancing facilities and amenities at subways, bus stops, and inside buses ensures that 
patrons have an enjoyable ride for the duration of their trip. A study of Curitiba’s bus transit system 
in Brazil revealed that enhanced station platforms made same-level boarding access easier, 
protected riders from weather conditions, and allowed riders to pay fares before boarding. These 
improvements, coupled with a single fare with unlimited transfers, DBLs, signal priority for buses,
buses with large-capacity doors, and express bus transit services, led to a reduction of bus dwell 
times by about 15 to 19 seconds, a reduction of 27 million auto trips per year, and the avoidance 
of 27 million liters of fuel used annually. Thus, Curitiba consumes about 30% less fuel per capita 
compared to eight similarly sized Brazilian cities.40 

According to a report from Organization Gestion Marketing, results obtained from eight 
European cities indicated a substantial surge in public travel patterns in the initial two years after 
the introduction of a fare integration system.41 These outcomes were similar to those from a study 
conducted by Sharaby and Shiftan (2012) which explored the effect of fare integration on transit 
ridership and travel patterns in Haifa, Israel. In Haifa, the complex pre-boarding fare system was 
converted into a single ticket system with free transfers between the different zones, ultimately 
leading to a reduction in fares for passengers. This implementation and ensuing results led to a 
25% increase in single ticket sales, a 7.7% increase in passenger trips, and an 18.6% increase in bus
boarding.42 

2.5 Dedicated Bus Lanes 

Dedicated bus lanes became one of the tools implemented to navigate through possible traffic 
congestion on transit routes, especially during peak hours. A DBL is a restricted lane reserved for 
buses that is used to increase the speeds of public transit buses thereby improving travel time. They 
are an essential component of a high-quality bus rapid transit (BRT) network, which ensures the 
reliability of public transport. Usually, a DBL occupies a section of a roadway that also has lanes 
serving general automotive traffic.43 

Dedicated Bus Lanes prevent congestion on roads by restricting these lanes from private vehicles 
during peak hours. They could potentially lead to significant improvements in the performance of 
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BRT networks and encourage a switch from private vehicles to public transportation due to the 
significant increase in efficiency.44 The implementation of DBLs in any city is very likely to 
increase the effectiveness and demand for public transportation.45 

Nevertheless, some studies posit the opposite result for DBLs, claiming they are difficult to 
enforce, and little is done to prevent non-transit vehicles from using these lanes, even during peak
hours.46 

In Washington, DC, these bus lanes are usually installed on corridors with frequent bus service 
and high traffic congestion that causes reduced bus speeds and reliability issues.47 DBLs are often 
located in the right curb lane. They are painted red to indicate they are restricted to buses only. 
The installation of red pavements on DBLs lead to a significant reduction in unauthorized use of 
the lanes by other vehicles, as is the case on Georgia Avenue (NW) in the present study area. 
Despite DBLs’ restrictions, vehicles making right turns while approaching intersections are usually 
permitted.48 In addition, DBLs can also be used by bicycles, charter buses, school buses, and 
marked taxis. 

DBLs could potentially reduce travel times for buses between 15% and 50%, similar to other cities 
such as New York and Los Angeles.49 So far, in Washington, DC, DBLs have been implemented
on Georgia Avenue (NW), H Street (NW) and I Street (NW), M Street (SE), and Martin Luther
King, Jr. Avenue (SE). The impact of DBLs on bus travel times on these routes has not been 
evaluated. 

2.6 Assessing Intersection Measures of Effectiveness and Traffic Operational 
Performance 

The operational characteristics of traffic can be determined by the movement of a group of vehicles 
or the whole traffic stream along a roadway.50 In the literature, there are microscopic as well as 
macroscopic expressions to represent traffic operations. While microscopic traffic models focus on 
the movement of individual vehicles, macroscopic models are used to characterize the movement 
of groups of vehicles. The Highway Capacity Manual, Sixth Edition (HCM), published by the 
Transportation Research Board, provides information and procedures to compute the capacity of 
highway facilities (from freeways to unsignalized intersections) along with the effects of transit, 
pedestrians, and bicycles on the performance of such systems.51 The speed-flow relationships for 
undersaturated flow (non-congested conditions) can be quantified using the HCM. There are 
three primary characteristics used in the HCM that help to describe the macroscopic operations 
of a roadway: flow, speed, and density.52 These components have a vital role in the traffic 
simulation software analysis to obtain the measures of effectiveness, which has been discussed 
further in this report. The information presented in the following subsections is taken from the 
HCM, Sixth Edition. 
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Density, k 

1. Flow (q) 

Flow is the number of vehicles passing a reference point per unit of time. It can also be referred to 
as throughput, volume, or intensity. Flow is the reciprocal of the average headway (distance 
between two vehicles measured in time) which is typically expressed in vehicles/hour. 

2. Speed (v) 

Speed is the amount of distance a vehicle travels per unit time (expressed in mile/ hour). For 
macroscopic expressions, the average speed is obtained by dividing the sum of all the instantaneous
speeds by the total number of vehicles in the sample. The average speed can help determine 
whether a roadway segment is congested or not. Density, for a segment, is the reciprocal of the 
average spacing between vehicles. Density is expressed in vehicles/miles and helps determine the 
quality of service for roadway facilities. 

The relationship between these two traffic stream parameters can be represented as: 

Flow = Speed * Density 

Figure 2 presents the relationship between traffic flow and density. As observed, free-flow speed
is observed at critical density, after which the speed (as well as the flow) decreases with an increase
in density. 

Figure 2. Flow Density Relationship53 

Additional performance measures for multimodal traffic operations include travel time, delay, and 
queue. These measures of assessment are discussed below. 
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1. Travel Time 

Travel time is the time required to travel from an origin point to a destination. It is the inverse of 
speed and can be represented as: 

TT = d/v 

where D = distance from an origin to destination (in miles) and 

V = average speed (in mph). 

For transit agencies, the prediction of travel time is an essential component of providing reliable 
information for patrons to effectively plan their daily commute. According to the Transit Capacity 
and Quality of Service Manual (TCQSM), a transit vehicle is considered to be on time if the 
vehicle arrives within 5 minutes before or after the scheduled arrival time in contrast to WMATA’s 
on-time bus arrival times window of two-minute-early and seven-minute-late after posted arrival 
time 

2. Delay 

Delay is the additional travel time required to travel across a particular corridor. There are three 
different types of delay that are used in traffic operations: stopped delay, travel time delay, and 
control delay. 

a. Stopped Delay: A vehicle experiences a stopped delay while it is completely stopped. 

b. Travel Time Delay: The difference between the actual travel time of a vehicle and the 
estimated “ideal” travel time corresponds to the travel time delay. 

c. Control Delay: A vehicle experiences a control delay when it complies with traffic controls
such as traffic signals and stop signs. The performance of intersections (signalized, 
unsignalized, and roundabouts) is generally assessed by measuring the control delay. 

3. Queue 

Queue or queue length is the number of vehicles stopped along a segment at a signalized (or 
unsignalized) intersection waiting to be served. Queue length is generally used at facilities with 
interrupted flow (such as intersections) rather than at facilities with uninterrupted flow (such as 
freeways/two-lane highways). 
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Measures of Effectiveness and Level of Service 

Level of service (LOS) for a facility is defined as the qualitative measurement of motor vehicle 
traffic service. LOS can be used to analyze the traffic performance based on several performance 
measures of the traffic flow. The scale of LOS ranges from A (best) to F (worst) and is evaluated 
by assessing measures of effectiveness (MOEs). The MOEs, which are performance measures, 
differ for interrupted and uninterrupted traffic flows. The MOEs for signalized intersections have 
been presented in Table 2. 

Table 2. MOEs in the HCM 2010 for Signalized Intersection 

Facility MOEs Comments 

Signalized 
Intersections 

Auto mode Control delay 
(s/veh) 

LOS can be computed for each lane group, each 
intersection approach (heading towards the 
intersection), and for the entire intersection; for 
approaches and intersection-wide assessment, 
LOS is defined solely by control delay 

Pedestrian and 
bicycle modes 

LOS score based on 
traveler perception 
assessment 

LOS score for pedestrians estimated for each 
crosswalk and intersection corner; LOS score 
for bicycles is estimated for each approach 

 

    

       

            
               

                
           

      
     

          

   

 
 

   
 

         
     

 
    

       

  
  

    
 

 

       
      

       

 

               
               

              
           

             
              

                
             

      

  

From Table 2, control delay emerges as the primary MOE to determine the LOS of a signalized 
intersection. An increase in control delay due to a traffic signal directly corresponds to an increase 
in travel time experienced by vehicles. Different variables affect the control delay at signalized 
intersections such as signal phasing and coordination along a corridor, signal cycle length, and 
traffic volumes.54 For unsignalized intersections, such as an All-Way Stop Controlled or a Two-
Way Stop Controlled intersections, LOS is expressed as a weighted average of the control delay
(at an all-way stop or a roundabout) or the weighted control delay experienced by vehicles traveling 
on the minor approaches (two-way stop). The LOS criteria for signalized and unsignalized 
intersections are presented in Table 3. 
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Table 3. Level of Service Criteria for Signalized and Unsignalized Intersections 

Level 
of 
Service 

Average Control Delay 
(seconds/ vehicle) 

General Description 

For 
Signalized 
Intersections 

For Signalized 
Intersections 

A ≤10 0–10 Free flow 

B >10–20 >10–15 Stable flow (slight delays) 

C >20–35 >15–25 Stable flow (acceptable delays) 

D >35–55 >25–35 Approaching unstable flow (tolerable delay, occasionally 
wait through more than one signal cycle before 
proceeding) 

E >55–80 >35–50 Unstable flow (intolerable delay) 

F >80 >50 Forced flow (congested and queues fail to clear) 

2.7 Impacts of Dedicated Bus Lanes on Traffic Performance 

Several studies have been conducted over the years on the effects of a DBL on traffic operation. 
Different types of simulation, as well as operational practices, have been performed to observe the 
potential benefits of implementing either dedicated or intermittent bus lanes in a general urban 
setting similar to Washington, DC. In Lyon, France, a study utilized variable message signs and 
dynamic lane assignment to designate a bus lane with intermittent priority based on bus presence. 
The study evaluated overall intersection delays as well as movement delays to determine the 
benefits of an exclusive transit lane based on demand. Results demonstrated improvements in travel 
time (up to 14% reduction in travel time in the westbound direction during peak hours) with 
minimal impacts on traffic flow (no effects on the overall average intersection delays).55 Impacts 
on the bus system’s performance were studied to demonstrate the benefits of the combination of 
intermittent bus and transit signal priority. The authors compared results from four different 
configurations (Intermittent bus lanes, transit signal priority, both, and neither) for a 350-m case 
study on a selected corridor. 
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An approximately 10-second decrease in travel time was observed when intermittent bus lanes 
were deployed and there was also a reduction of time headways from 16.3% to 15%. There was an 
increase in average speed (by 15%) and a decrease in the time-headway variation (from 16.3% to 
11.9%) when transit signal priority was deployed in addition to intermittent bus lanes, which can 
be a decisive measure for traffic management authorities to include transit signal priority in 
addition to exclusive bus lanes.56 Similarly, a study was conducted in Kolkata City, India to 
investigate the signal priority for buses and the effectiveness of bus priority lanes at two signalized 
approaches. The results from that study demonstrated a positive impact on travel time, as well as 
a decrease in vehicular emissions, after introducing bus signal priority. Implementation of bus 
priority led to a 15–20% reduction in bus travel time, but it also led to a 6% increase in non-priority
vehicular travel time. Moreover, the study pointed out that the road users showed a positive 
attitude after the implementation of bus priority lanes.57 

A study was conducted in the United Kingdom where capacity and travel times were observed in 
a corridor with bus lanes. While the study pointed out the benefits of intermittent bus lane usage 
when combined with optimized transit signal priority, the authors also observed a reduction in 
capacity as well as an increase in travel times of the buses. This phenomenon occurred during times
when the exclusive lane was active with the potential of reducing the bus travel time in subsequent
intersections. Hence, the practice would not be ideal in a short corridor with an exclusive bus lane 
or if the bus stops were close to each other.58 Another paper investigated the simulation of multiple 
bus lane combinations to evaluate a multiplier effect. The multiplier effect refers to higher road 
segment performance due to the combination of bus lanes than the road segment performance due
to the sum of individual bus lanes). The simulations showed that conversion of a traffic lane to a 
dedicated bus lane when the upstream traffic volume is greater than the capacity of traffic lanes 
(>2,400 vehicles/hr) leads to higher bus travel times (>1,100 seconds). There was an observed 20% 
increase in bus travel time and a 60% increase in general traffic travel time. Hence, the authors 
concluded that bus lanes would generate negative effects during congested bottlenecks.59 

On the contrary, another study that was conducted to find the ideal combination of exclusive bus 
lanes on the road segment network demonstrated that the total traffic travel time decreased after 
installing dedicated bus lanes. Two scenarios, with a bus lane on a different link along a segment 
in each scenario, were compared with the base case scenario (road segment with no dedicated bus
lane). The results from the scenarios with the bus lanes showed that the passenger car travel times
(non-transit traffic) decreased but the bus travel times increased. The decrease in non-transit 
vehicular travel times accounted for an overall improvement of the traffic flow (for bus and non-
transit traffic) by 3.4%.60 Similar results were also observed in a different study that considered 
changing the location of DBLs on an existing network. During under-saturated traffic conditions,
a reduction in bus travel time was observed which outweighed the increase in the travel time of the
non-transit traffic. The lane implementation helped in the reduction of bus travel times while 
slightly increasing car travel times. The authors also concluded that for saturated conditions, 
implementing dedicated bus lanes at strategic locations can be performed to achieve a significant 
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decrease in bus travel times and the expense of only a minimal increase for passenger car travel 
times.61 

Bus lane intermittent and dynamic priority was explored in an arterial in Changzhou, China, 
taking into consideration performance parameters such as clear distance (distance between bus and
the downstream vehicle), degree of saturation, headway frequency, etc. Dynamic priority refers to 
the bus lane allocation dynamically depending on different traffic patterns or times throughout the
day. For bus rapid transit, the authors noted a relatively small overall average delay when the 
volume-to-capacity ratio (saturation) was low, and an increase in average delay was observed with 
the increase in saturation. Based on the authors’ findings, for a saturation of less than 0.7, dedicated
bus lane implementation was not recommended. However, when the saturation is greater than 0.9,
the implementation of a dedicated bus lane system demonstrated a significant decrease in delays.62 

Red bus lanes were also introduced on First and Second Avenue in Manhattan, New York. 
Enforcement of red lanes led to a decrease in vehicular violations (vehicles illegally driving on 
dedicated bus lanes) and a decrease in vehicles parked on bus lanes by approximately 55% and 35%,
respectively. However, there was an increase of vehicles illegally parking on the red lanes by 29%. 
Although the red lanes were installed to prioritize easier bus movement, less than 10% of the bus 
fleet operating on the segments used the bus lanes, which increased the average bus travel time.63 

2.8 Artificial Neural Networks and Their Applications 

Artificial Neural Networks (ANNs) are mathematical models that imitate the functioning of a 
human brain to solve computational problems. Due to the versatility of the learning mechanism 
of these networks, ANNs have been used in engineering and other disciplines to solve complex 
tasks such as data prediction/forecasting, pattern recognition, and classification by identifying the 
underlying relationships in a dataset. There is an interconnection of “neurons” in the ANN (like 
in the human brain) which enables learning through the process of training with enough data and 
good initialization.64 

A variety of problems that are solved using ANN involve the use of multilayer perceptrons (MLP).
The learning process involves building a model where the relationship between the inputs and the
known outputs in the examples are mapped. The process is also known as supervised learning. 
MLP consists of a minimum of three layers—input layer, hidden layer, and output layer—where 
each layer has nodes (neurons) that are assigned different weights. These nodes are interconnected, 
which enables the flow of information from the input layer to the hidden layer. The learning takes 
place in the hidden layer and the information is then passed to the output layer to obtain results. 
The backpropagation algorithm occurs where the model starts with random weights and then 
adjusts the weights in each node for the model to make better or more accurate predictions. The 
process of predicting generates errors, and hence, the goal of the weight assignment is to reduce 
the final error to achieve ideal performance.65 The errors obtained while predicting the output are 
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placed back in the network to further adjust the assigned weights of the neurons, which is referred 
to as error backpropagation. This technique has been frequently used in transportation as well as 
other engineering studies.66 An example of a three-layered neural network (one input, one hidden, 
and one output layer) has been presented in Figure 3. 

Figure 3. Illustration of the MLP in an ANN 

Activation functions or transfer functions are responsible to create nonlinearity in the ANN since 
physical world phenomena do not always follow linearity (graphically represented as a straight 
line). This is achieved through calculating the weighted sum of the inputs provided and adding a 
bias for the activation or deactivation of a neuron.67 Different types of nonlinearity include sigmoid, 
tanh, ReLU, leakyReLU, softmax. The commonly used nonlinear activation functions are sigmoid
and hyperbolic tangent activation functions. While the sigmoid activation function transforms the 
input into an output value between 0.0 and 1.0, the hyperbolic tangent function (tanh) yields 
output values between -1.0 and 1.0. A visual representation of these functions is presented in
Figure 4. Since the hyperbolic function helps to center the data (by bringing the mean closer to 0),
it can be a better tool in prediction models.68 
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Figure 4. Representation of Sigmoid and Hyperbolic Tangent 
Activation Function Curves69 

Studies have been conducted to predict the travel times of buses using ANN and other 
mathematical models. One such study showed that ANN models to predict bus travel times could 
outperform regression models by obtaining lower mean absolute percentage error (MAPE) when 
compared to other models. For example, the results of a study that used AVL data in Houston, 
Texas, showed that the average MAPE obtained from the ANN model (4.76) was significantly 
lower than the historical data-based model (simple statistical model used by the authors) (9.96) 
and regression model (17.88).70 Another study conducted in Washington, DC, demonstrated how 
ANN could outperform a multiple regression model when predicting travel times of the buses 
during different peak hours during the day in Washington, DC. It was determined that the 
approximation method using ANN to find the bus travel time based on the Quasi-Newton 
algorithm (with 2 perceptron layers) yielded the lowest errors in predicting the bus travel time.71 

However, in both studies involving ANN, neither considered the operation of buses on DBLs, nor
did they study the transit operation before and after the implementation of such infrastructure. 

In a study to implement transit signal priority by integrating traffic signal timing optimization
using ANN, the authors concluded that implementing transit signal priority plans with pre-timed
control would not improve schedule adherence. However, when a dynamic signal priority
optimization in real-time traffic was utilized, general traffic delay was reduced by 5% to 90% while
transit delay was reduced by 15% to 85% (depending on different congestion levels as well as 
control type).72 While the results indicate better traffic flow at signalized intersections, the study 
did not consider segments with DBLs. 
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2.9 Summary of Literature Review 

The public transport system has undergone several improvements in recent times to ensure the 
continued convenience and utility of public transportation to the populace even amid a debilitating
pandemic. One of the mitigating strategies is the implementation of DBLs. Several studies have 
been conducted to determine the impacts of DBLs. In some cases, the impact appears positive 
with a significant decrease in delays for buses and private vehicles, alleviating traffic congestion. 
Nevertheless, other studies still show instances of increases in travel times and delays for buses or 
general traffic despite the presence of DBLs. The literature also indicates that transit signal priority 
and enforcement, in conjunction with dedicated bus lanes, improve the effectiveness of dedicated 
or exclusive bus lanes. 
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3. Research Methodology 
3.1 Description of the Study Area 

This research is conducted in Washington, DC, where the Washington Metropolitan Area 
Transit Authority (WMATA) oversees bus and rail operations. North Capitol, South Capitol, and 
East Capitol Streets divide DC into four unequal quadrants: Northwest (NW), Northeast (NE), 
Southwest (SW), and Southeast (SE). These quadrants are further divided into eight wards 
overlapping the quadrant boundaries. Figure 5 shows a map of Washington, DC, divided into 
wards. As of April 2020, the population of Washington, DC, was approximately 689,545.73 The 
city is highly urbanized and is ranked as the sixth most congested city in the United States, with 
each driver spending an average of 63 hours per year in traffic.74 

Figure 5. Map of Washington, DC, by Wards75 

N 

WMATA began overseeing the regional bus systems in the DC area in 1973. Currently,
WMATA has a bus fleet of approximately 1,580 buses that operate on 325 routes in Washington,
DC, in portions of Maryland, and Northern Virginia, servicing over 11,500 bus stops. The 
WMATA Metrobus network is the sixth-largest bus network in the United States. These buses 
operate 24 hours a day, seven days a week, and they make more than 400,000 trips each weekday. 
Currently, there are 14 bus priority corridors implemented in DC with the motive of making bus 
transit faster and more reliable.76 
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3.2 Data Collection 

The following steps were followed to collect the data required for analysis. 

3.2.1 Selection of Segments and Bus Routes 

The District Department of Transportation (DDOT) proposed a dedicated bus lane pilot during 
the summer of 2019 on the H Street and I Street (NW) corridors in downtown DC. The 
temporary bus lanes for H Street (NW) heading eastbound started from the bus stop located 
midblock between Pennsylvania Avenue, NW and 18th Street, NW to H Street and 14th Street, 
NW. The bus lanes for I Street, NW started at I Street and 13th Street, NW, and ended at the bus 
stop located midblock between 20th Street and Pennsylvania Avenue, NW. 

WMATA buses are equipped with Automatic Vehicle Locator (AVL) technology which allows 
the real-time tracking and reporting of all logged buses. WMATA provided AVL data for buses 
operating on segments of H Street and I Street (NW) for the months before (May 2019, June 
2019) and after (September 2019, October 2020) the installation of bus lanes. 

The following bus routes operating on H Street and I Street (NW) were selected for the study: 
Route 7Y (Lincolnia-North Farlington Line), Route 32 (Pennsylvania Avenue Line), Route 30N
(Friendship Heights-Southeast Line), and Route 30S (Friendship Heights-Southeast Line). 

3.2.2 Route Characteristics 

The bus routes selected for this study have the following characteristics. Classifications of the 
primary operational roadways on which the transit buses operate are listed according to DDOT’s 
2016 Street Function Classification System, which is currently in use. 

1. Route 7Y 

Buses on Route 7Y operate primarily on Constitution Avenue (NW), Jefferson Davis Highway, 
and I-395 (Shirley Highway) with the main directions of travel being 
northeastbound/southwestbound. Constitution Avenue (NW) is classified as a principal arterial 
while Jefferson Davis Highway and I-395 are classified as interstate roads. Route 7Y buses run 
from Farragut North Station to Southern Towers in Virginia. The length of the route is 
approximately 7.5 miles, and the buses serve 31 bus stops in both the northeastbound (NEB) and 
southwestbound (SWB) directions of travel. 
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2. Route 32 

Buses on Route 32 primarily operate on Pennsylvania Avenue (SE), Naylor Road (SE), Alabama 
Avenue (SE), Independence Avenue (SW), and Southern Avenue (SE) with the main directions 
of travel being NEB and SWB. The routes are round trips. Pennsylvania Avenue (NW) and 
Independence Avenue (SW) are classified as principal arterials, while Naylor Road, Alabama 
Avenue, and Southern Avenue (SE) are classified as minor arterials. Route 32 transit buses run 
from Virginia Avenue and E Street (NW) to Southern Avenue Bus Station in the Southeast DC 
round trip. The length of the route is approximately 8.75 miles, and the buses serve 47 bus stops 
along both the NEB and SWB directions of travel. There are 106 intersections between the first 
and the last bus stops. Route 32 operates from 4:00 AM–1:00 AM during weekdays (Monday– 
Friday) and from 5:00 AM–2:00 AM during weekends (Saturday and Sunday).77 

3. Route 30N 

Transit buses on Route 30N operate primarily on Wisconsin Avenue (NW), Pennsylvania Avenue
(NW), Independence Avenue (SW), Branch Avenue (SE), and Naylor Road (SE) with the main 
directions of travel being northwestbound (NWB) and southeastbound (SEB). Pennsylvania
Avenue (NW), Wisconsin Avenue (NW), Independence Avenue (SW), and Branch Avenue (SE) 
are classified as principal arterials while Naylor Road (SE) is classified as a minor arterial. Route 
30N buses operated from Friendship Heights Station to Naylor Road Station and back. The length 
of the route was approximately 7.95 miles, and the buses served 75 bus stops along the NWB 
direction of travel and 71 bus stops along the SEB travel direction. Route 30N operated from 4:30 
AM–11:30 PM during weekdays (Monday–Friday) and did not operate during weekends 
(Saturday and Sunday). The service has been discontinued due to redundancy since September 
2021. The discontinuation of the service has no impact on the data used for the study or the data 
collection procedures. 

4. Route 30S 

Route 30S transit buses operated primarily on Wisconsin Avenue (NW), Pennsylvania Avenue 
(NW), Independence Avenue (SW), Naylor Road (SE), Alabama Avenue (SE), and Southern 
Avenue (SE) with the main direction of travel being NWB/SEB. Pennsylvania Avenue (NW), 
Wisconsin Avenue (NW), and Independence Avenue (SW) are classified as principal arterials, 
while Naylor Road (SE), Southern Avenue (SE), and Alabama Avenue (SE) are classified as minor
arterials. Route 30S buses operated from Friendship Heights Station to Southern Avenue Station 
and back. The length of the route was approximately 3.5 miles, and buses served 75 bus stops along
the NWB direction of travel and 74 bus stops along the SEB travel direction. Route 30S operated 
from 4:00 AM to 10:00 PM (NWB) and 5:00 AM to midnight (SEB) Monday through Friday.
The service has been discontinued due to redundancy since September 2021. The discontinuation
of the service has no impact on the data used for the study or the data collection procedures. 
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Proposed Bus Lanes 

Study Locations 

3.2.3 Study Intersections on Selected Segments 

In addition to obtaining WMATA data for bus routes operating on segments of H Street and I 
Street (NW), the project team also obtained turning movement count (TMC) data at five 
intersections on the study segments. Figure 6 shows the locations at which the video cameras were 
installed for the study intersections to obtain TMCs. 

Figure 6. Locations of Video Cameras on Segments with Dedicated Bus Lanes 

The researchers analyzed the measures of effectiveness before and after the installation of DBLs 
for the following locations. Brief descriptions of the study intersections based on field observations 
have also been provided. 

1. H Street and 14th Street (NW) 

The study segment of H Street (NW) is a one-way street that runs in the eastbound direction 
while 14th Street (NW) is a bi-directional street oriented in the north-south direction. The 
eastbound approach of H Street (NW) has an on-street residential parking lane on the north side 
followed by four travel lanes and a right-turn-only lane. The bus lane (painted in red) on H Street 
at the intersection can be seen in Figure 7. Fourteenth Street (NW) has a total of three lanes per
direction on the northbound and southbound approaches with no on-street parking on either side.
The pavement markings and surfaces on the northbound and southbound approaches are in good 
condition, as can be seen in Figures 8 and 9. The intersection is signalized with a statutory speed 
limit of 25 mph. 
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Figure 7. H Street (NW) Eastbound Approach 

Figure 8. 14th Street (NW) Northbound Approach 
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Figure 9. 14th Street (NW) Southbound Approach 

2. H Street and 17th Street (NW) 

The study segment of H Street (NW) is a one-way street that runs in the eastbound direction 
while 17th Street (NW) is a bi-directional street oriented in the north-south direction. The 
eastbound approach of H Street (NW) has on-street parking on the north side and four travel 
lanes. The bus lane on H Street (NW) at the intersection (in red) can be seen in Figure 10. Both 
the northbound and southbound approaches of 17th Street (NW) have four travel lanes (in the 
respective direction of travel) with three receiving lanes and no on-street parking. The pavement 
markings and surfaces on the northbound and southbound approaches of the intersection are in 
good condition, as can be seen in Figures 11 and 12. The intersection is signalized with a statutory 
speed limit of 25 mph. 
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Figure 10. H Street (NW) Eastbound Approach 

Figure 11. 17th Street (NW) Northbound Approach 
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Figure 12. 17th Street (NW) Southbound Approach 

3. I Street and 15th Street/ Vermont Avenue (NW) 

The study segment of I Street (NW) is a one-way street oriented in the westbound direction 
whereas 15th Street and Vermont Avenue (NW) are bi-directional streets that run in the north-
south direction. I Street (NW) has four travel lanes and a parking lane on the south side. The bus 
lane (painted in red) on the north side of I Street (NW) is shown in Figure 13. The northbound 
and southbound approaches of 15th Street/Vermont Avenue (NW) have two travel and receiving 
lanes. There is parking on both sides of the northbound and southbound approaches, as shown in 
Figures 14 and 15. The pavement markings and surfaces at the intersection are in good condition.
The intersection is signalized with a statutory speed limit of 25 mph. 
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Figure 13. I Street (NW) Westbound Approach 

Figure 14. Vermont Avenue (NW) Northbound Approach 
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Figure 15. 15th Street (NW) Southbound Approach 

4. I Street and 16th Street (NW)/Black Lives Matter Plaza 

The study segment of I Street (NW) is a one-way street oriented in the westbound direction 
whereas 16th Street (NW)/Black Lives Matter Plaza is a bi-directional street that runs in the north-
south direction. I Street (NW) is classified as a principal arterial whereas 16th Street (NW)/Black 
Lives Matter Plaza is classified as a minor arterial. I Street (NW) has four travel lanes and no on-
street residential parking, as shown in Figure 16. Sixteenth Street (NW) was renamed Black Lives
Matter Plaza by DC Mayor Muriel Bowser on June 5, 2020. During the time of data analysis, 
vehicular entry has been restricted (only emergency vehicles have access on the left side) on the 
northbound and southbound approaches, as can be seen in Figures 17 and 18. The intersection is 
signalized with a statutory speed limit of 25 mph. 
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Figure 16. I Street (NW) Westbound Approach 

Figure 17. 16th Street (NW)/Black Lives Matter Plaza Northbound Approach 
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Figure 18. 16th Street (NW)/Black Lives Matter Plaza Southbound Approach 

5. I Street and 17th Street (NW) 

The study segment of I Street (NW) is a one-way street oriented in the westbound direction, 
whereas 17th Street (NW) is a bi-directional street that runs in the north-south direction. I Street 
(NW) is classified as a principal arterial, and 17th Street (NW) is classified as a minor arterial. I 
Street (NW) has four travel lanes, and the bus lane is painted red, as shown in Figure 19. There 
are three travel and receiving lanes on the northbound and southbound approaches of 17th Street 
(NW), as can be seen in Figures 20 and 21, respectively. Additionally, the pavement markings and 
surfaces at the intersection are in good condition and there is no on-street parking on any of the 
approaches at the intersection. The intersection is signalized with a statutory speed limit of 25 
mph. 
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Figure 19. I Street (NW) Westbound Approach 

Figure 20. 17th Street (NW) Northbound Approach 
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Figure 21. 17th Street (NW) Southbound Approach 

3.2.4 Data Extraction Metrics 

Video Data Extraction 

The project team installed video data recording equipment for the “before” scenario observations 
in May and June of 2019 while recording equipment for the “after” scenario were installed in 
September 2019 and October 2020. Cameras were installed to record traffic flow and bus usage at
the selected sites, after which the variables to be used as measurements of effectiveness were 
extracted. The video equipment was non-intrusive and thus had little to no influence on drivers’ 
behaviors. The video data for the study locations were obtained for five hours per day (7:00 AM–
9:30 AM and 4:00 PM–6:30 PM) from Tuesday through Thursday twice a month. Table 4 shows 
the video data collection dates before and after the installation of bus lanes. 
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Table 4. Video Data Collection Days for “Before” and “After” Scenarios 

Before Data After Data 

May 2019 May 7 

May 8 

May 9 

May 14 

May 15 

May 16 

September 2019 September 17 

September 18 

September 19 

September 24 

September 25 

September 26 

June 2019 June 11 

June 12 

June 13 

June 18 

June 19 

June 20 

October 2020 October 13 

October 14 

October 15 

October 20 

October 21 

October 22 

The vehicular TMCs were extracted from the video data, and the project team processed the 
information in JAMAR PetraPRO™ software. The team extracted essential traffic characteristics 
components from the AM and PM peak hour volumes such as peak hour factors and heavy vehicle 
percentages for further analysis in Synchro software (to obtain MOEs). In addition to TMCs at 
all the study intersections, the project team also tallied the variables such as buses traveling in bus 
lanes and other lanes, as well as non-transit vehicles parked/ stopped on bus lanes, and violations 
at the study intersection (such as illegal turns on red) using the video playbacks.) 
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STOP _F STOP - STOP_F STOP_ 
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_ID TIME _DISTANCE STATUS _TIME _TIME SPEED DOOR_ DOOR_ DOOR DOOR E DE ING STATE _TYPE saiptlon TYPE d_tlme - _ID ID 
N NC£ - - - ME -

ENTRY ENTRY EXIT EXIT 

51000056 3201 0 NUU. 2114 48:03.0 '4100 603 0 38.8296 •76.9905 49 9 NULl 9.41E+08 2 NULl 48:00.0 NULL BT-SH 

S1000056 3201 -1 NULL 2114 48:03.0 '4100 2339 0 38.8296 -76.9905 49 6 NULL 9.41E+08 2 NULL 48:00.0 NULL 

4

1
S1000056 3201 -1 NUU. 2114 48:03.0 '4100 603 0 38.8296 -76.9905 49 72.0NULL 9.41E+08 2 NULL 48:00.0 NULL 

S S1000056 3201 0 NULL 2114 00:01.0 54205 0 1321 0 38.8297 -76.9904 46 104 NULL 9.41Ei-08 2 NULL 48:00.0 NULL BT-SH 

6 51000056 3201 0 NUU. 2114 00:25.0 54205 0 1345 0 38.8297 -76.9904 46 104 NULL 9.41E+08 2 NULL 48:00.0 NULL BT-SH 

, i.!s1000056 3201 0 NULL 2114 00:51.0 54205 0 1371 0 38.8297 -76.9904 46 104 NULL 9.41E+-08 2 NULL 48:00.0 NULL BT-SH 

8 51000056 3201 0 NULL 2114 01:16.0 54205 0 1396 0 38.8297 -76.9904 46 104 NULl 9.41E+08 2 NULl 48:00.0 NULL BT-SH 

9 S1000056 3201 0 NULL 2114 01:40.0 54205 0 1420 0 38.8297 •76.9904 46 104 NULL 9.41E+-08 2 NULL 48:00.0 NULL BT-SH 

10 51000056 3201 0 NULL 2114 06:01.0 54205 229 1910 0 38.8297 -76.9904 46 5 NULl 9.41E+08 2 09:SO.0 48:00.0 NULL BT-SH 

11 S1000056 3201 0 NULL 2114 06,02.0 '4205 0 1681 0 38.8297 -76.9904 46 101 NULL 9.41E+08 2 NULL 48:00.0 NULL BT-SH 

12 S1000056 3201 0 NULL 2114 15:00.0 54205 2219 0 38.8297 ·76.9904 46 104 NULl 9.41E+-08 2 NULl 48:00.0 NULL BT·SH 

13 51000056 3201 0 NULL 2114 30,00.0 '4205 3120 0 38.8297 -76.9904 46 104 NULL 9.41E+08 2 NULL 48:00.0 NULL BT-SH 

14 S1000056 3201 0 NULL 2114 45:01.0 54205 0 4021 0 38.8297 •76.9904 46 104 NULl 9.41E+08 2 NULl 48:00.0 NULL BT·SH 

15 51000056 3201 0 NULL 2114 00:01.0 54205 0 4921 0 38.8297 •76.9904 46 104 NULL 9.41E+08 2 NULL 48:00.0 NULL BT-SH 

16 S1000056 3201 0 NULL 2114 02:00.0 54205 0 S039 0 38.8297 -76.9904 46 15 NULl 9.41E+08 2 NULl 02:00.0 NULL 1003S37 

17 51000056 3201 0 NULL 2114 02:00.0 54205 0 5039 0 38.8297 •76.9904 46 71.0NULL 9.41E+08 2 NULL 02:00.0 NULL 1003537 

18 S1000056 3201 21 NULL 2114 02:00.0 54205 5039 0 38.8297 -76.9904 46 16 NULL 9.41E+08 02:00.0 48:00.0 NULL 1000S93 

19 S1000056 3201 3S NULL 2114 02,00.0 '420S 5039 0 38.8297 -76.9904 46 16 NULL 9.41E+08 02:00.0 48:00.0 NULL 1000948 

20 S1000056 3201 2 NULL 2114 02:00.0 54205 5039 0 38.8297 -76.9904 46 16 NULL 9.41E+-08 02:00.0 48:00.0 NULL 3002667 

21 51000056 3201 20 NULL 2114 02,00.0 '420S 5039 0 38.8297 -76.9904 46 16 NULL 9.41E+08 02:00.0 48:00.0 NULL 1000576 

22 S1000056 3201 13 NULL 2114 02:00.0 54205 5039 0 38.8297 ·76.9904 46 16 NULL 9.41E+-08 02:00.0 48:00.0 NULL 1003927 

23 51000056 3201 42 NULL 2114 02:00.0 '4205 5039 0 38.8297 •76.9904 46 16 NULL 9.41E+08 02:00.0 48:00.0 NULL 1001179 

24 S1000056 3201 25 NULL 2114 02:00.0 5420S 0 5039 0 38.8297 •76.9904 46 16 NULL 9.41E+08 2 02:00.0 48:00.0 NULL 1000702 

25 51000056 3201 48 NULL 2114 02:00.0 54205 0 5039 0 38.8297 •76.9904 46 16 NULL 9.41E+08 2 02:00.0 48:00.0 NULL 1003537 

26 Sl000056 3201 0 NULL 2114 02:02.0 5420S 0 5039 0 38.8297 •76.9904 46 11 NULL 9.41E+-08 2 NULL 02:00.0 NULL 1003S37 

27 51000056 3201 0 NULL 2114 22:35.0 149563 95 101 0 38.8685 -76.9709 162 9 NULL 9.41E+08 2 NULL 22:33.0 NULL 1000437 

28 51000056 3201 ·l NULL 2114 22:35.0 149563 0 1508 101 0 38.8685 •76.9709 162 6 NULL 9.41E+-08 2 NULL 22:33.0 NULL 

AVL Data Extraction 

WMATA officials provided the AVL data for the selected bus routes operating on the segments 
of H Street and I Street (NW) with the DBLs. Comma Separated Values (CSV) data files were 
obtained for the same days when the video data were collected (Table 4). A sample of the raw 
Excel data for a bus route obtained from the WMATA database is shown in Figure 22. 

Figure 22. Sample Datasheet Obtained from WMATA (Route 32) 

From Figure 22, it can be seen that the AVL systems (for Route 32 buses) recorded information 
including odometer reading, geolocation, and dwell time, among others. The datasheets were 
filtered to display only the information required for the regression and neural network analyses. 
Based on the significance of their impact on the travel time of transit buses (from the previous 
literature), the following fields of a bus trip were filtered for the selected routes from the data: 
departure and arrival times (event times), length of routes, bus geolocation, dwell time, travel time, 
and bus stop ID. 

The dwell times and the bus stop IDs were necessary to determine the duration a bus spent at the 
stops located on the segments with the bus lanes. For instance, the bus lane on H Street (NW) 
was installed from H Street and 18th Street (NW) to H Street and 14th Street (NW). The bus stops 
with following bus stop IDs are present within the H Street (NW) study segment: 

a. H Street and 18th Street (NW) - 1001148 

b. H Street (NW) and 17th Street (NW) - 1001133 
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c. H Street and Madison Place (NW) - 1001141 

d. H Street and 14th Street (NW) - 1003467 

The segment of I Street (NW) that has the bus lane includes the following bus stop IDs: 

a. I Street and 14th Street (NW) - 1001191 

b. I Street and 15th Street/ Vermont Avenue (NW) - 1001185 

c. I Street and 17th Street (NW) - 1001183 

d. I Street and 18th Street (NW) - 1001181 

The information was used to further obtain the following variables used in the multiple regression
and neural network analyses. 

Length of Route between Bus Stops (X1): The data provided by WMATA included the odometer 
readings of all the buses along a route. Hence, X1 was obtained by taking the difference in the 
odometer readings between any two served bus stops. 

Average Dwell Time at Served Bus Stops (X2): The dwell time is the period during which the 
front and the rear doors of a bus at a bus stop remained open to serve patrons. Average dwell time 
(X2) was regarded as mean of dwell times of the served bus stops between the origin and destination
points. Thus, average dwell time was computed as 

��� 
������� ����� ���� = � 

where N = number of served bus stops between the origin and the destination (inclusive) along a 
route and DT = dwell time of the bus at the nth bus stop. 

Bus Travel Direction (X3): The segments of H Street and I Street (NW) are classified as principal 
arterials at the limits of the study. H Street (NW) is one-way oriented in the eastbound direction 
while I Street (NW) is one-way oriented in the westbound direction. Since the same bus routes 
(30N and 30S) operated on both H Street (NW) and I Street (NW), for multiple regression, X3 

data points were coded as 0 (EB) or 1 (WB) based on the direction of travel. 

Presence of Dedicated Bus Lanes (X4): To distinguish the data collected before and after the 
installation of bus lanes, the “before” scenario data points were coded as 0 and the “after” scenario 
data points were coded as 1 for X4. 
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I Street and 16th Street, NW 

In Bus Lane In Other Travel Lanes 

Non-transit Non-transit 
Right turning 

Thru non-
Buses Taxis Cyclists non-transit Buses Taxis Cyclists Non-transit 

parked stopped transit 
vehicles 

7:00 4 2 0 0 20 1 11 6 0 196 

7:15 5 4 0 0 0 17 0 14 8 4 229 

7:30 5 3 2 0 0 21 0 9 10 1 200 

7:45 2 2 0 0 34 0 14 16 2 175 

8:00 4 6 1 0 0 27 1 10 16 5 185 

8:15 7 4 3 0 0 26 2 15 16 1 205 

8:30 3 5 2 0 0 40 1 11 22 7 198 

8:45 7 5 7 0 1 26 3 13 21 4 178 

9:00 2 6 0 0 27 1 12 15 6 212 

9:15 2 7 6 0 1 26 0 18 16 3 194 

Total 42 44 29 0 2 264 9 127 146 33 1972 

Peak Period (X5): The event time provided in the CSV by WMATA was used to obtain data from 
the morning peak (7:00 AM–9:30 AM) as well as the evening peak (4:00 PM–6:30 PM). The 
AM and PM peak data points were hence coded as 0 and 1 for X5, respectively. 

Average Percentage of Buses Using Bus Lane (X6): The rightmost lane in the H Street (NW) and 
I Street (NW) segments within the study boundaries were painted red, with additional pavement 
markings to designate them as DBLs. In addition to WMATA buses, the lane could be used by 
right-turning vehicles, bicycles, charter buses, school buses, and marked taxis. For this study, 
WMATA buses traveling on H Street and I Street (NW) were observed to see the compliance of 
buses for traveling on the bus lanes. A tally of the number of buses using the bus lanes and also the 
other travel lanes were extracted from the video files via playback. A sample of the DBL 
compliance tally sheet is presented in Figure 23. The summaries of bus lane usage for the “Before” 
and “After” scenarios during both the AM and PM peaks are presented in Appendix B. 

Figure 23. Sample Compliance Tally Sheet 

The average monthly compliance for the AM and PM peak hours at all the study intersections 
(both before and after implementation) was obtained using the following formula: 

�(����� ����� �ℎ� ��� ����)
�6 = �(����� ����� �ℎ� ��� ����) + �(����� ��������� �� ��ℎ�� �����) 

3.3 Data Analysis 

Two software programs were used for the data analysis. IBM’s SPSS Statistics 25 software (SPSS) 
was used for the paired t-test and regression analysis of the “before” and “after” periods, while 
Neural Designer was used for the neural network analysis. 
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b. All requested variables entered. 

Model 
Summary• 

a. Depende 
nt 
Variable: 
Travel 
Tlme,Y 

Enter 

Coefficients" 

Standardized 
Unstandardized Coefficients Coefficients 

Model 8 Std Error Beta 

(Constant) 53.968 9.156 

Length of Route, X1 .040 .004 .320 

Average Dwell Time, X2 .236 .048 .157 

Bus Direction, XJ -8.312 3.653 -.089 

Presence of Bus Lane X4 3.968 2.974 .040 

Peak Period, X5 6.200 3.048 .063 

Bus Compliance, XS .025 .076 .013 

a. Dependent Variable: Travel Time, Y 

Collinearity Statistics 

Sig. Tolerance VIF 

5.894 .000 

10.184 .000 .910 1.099 

4.950 .000 .889 1.125 

-2.275 .023 .593 1.687 

1.334 .182 .979 1.021 

2.034 .042 .930 1.075 

.327 .743 .606 1.651 

SPSS is a statistical software package that allows users to better understand the data under 
consideration based on the extraction of statistical insights. Figure 24 shows a sample analysis of a 
model in SPSS software. 

Figure 24. Snapshot of SPSS Interface and Sample Output 

Neural Designer is a software program that incorporates data science and machine learning 
techniques and which helps to build, train, and deploy neural network models. The high 
operability of Neural Designer allows it to be integrated into numerous projects from different 
sectors for approximation and classification problems. A snapshot of the software interface along 
with the sample output is presented in Figure 25. 
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Figure 25. Snapshot of Neural Designer Interface and Sample Output 

3.3.1 Determination of Sample Size 

A dependent t-test was used to compare the differences in MOEs of the five study intersections 
before and after installing the bus lanes on the H and I Street (NW) segments, for a two-tailed t-
test, setting the effect size to 0.5 (a medium effect size) and a significance of 0.05, a critical t-value
of 2.00575 is obtained. Hence, a minimum sample of 54 events was required for statistical validity 
(actual power = 0.95) for the t-test. A significance level of 95% ensured that the team can be 95% 
confident that the obtained results are credible and not resulted from errors caused by randomness.
For this study, five intersections were observed for 12 days (six days per month for two months) 
for both the “before” and “after” scenarios totaling 60 observations per scenario. 

For the multiple regression analysis, there should be a minimum of 10 observations per 
independent variable. There are five independent variables (predictors) that were used in the study, 
and hence, a minimum of 50 observations is required. From the WMATA data, at least 50 
observations were recorded for each bus route per peak period for both the “before” and “after” 
scenarios. 

In the case of ANN, since ANNs are highly data-dependent, the complexity and accuracy of the 
model depend on the number of input variables. Training with a large dataset for ANNs would 
result in models that make better predictions on unknown data. Thus, data for a minimum sample 
of 1,000 origin-to-destination trips were extracted and exported into a Comma Separated Values 
(CSV) file for the ANN analysis. This dataset consisted of filtered WMATA AVL bus data points 
and not the MOE dataset that was used for the dependent t–test. 
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3.3.2 Descriptive Statistics 

The project team used Synchro 10TM to compute descriptive statistics (including the mean, 
median, and standard deviation) computed, and obtaining the intersection MOEs. 

3.3.3 Dependent t-test 

Since H Street and I Street (NW) had a total of five intersections with bus lanes post-installation, 
a dependent t-test can be used to check for statistically significant differences for the same 
intersections over time. It is hypothesized that installing the bus lanes on the urban segments 
would result in better performance of intersections (Measures of Effectiveness). Hence, the 
Measures of Effectiveness used for the study will be more desirable (a lower value of MOE 
indicates better intersection performance) for traffic operation after installing the bus lanes. The 
hypothesis can be mathematically expressed as: 

Ho : ���AAAAAAA2 < ���AAAAAAA1 

H1 : ���AAAAAAA2 > ���AAAAAAA1 

where MOEAAAAAA1 = measures of effectiveness before the installation of bus lanes and MOEAAAAAA2 = measures 
of effectiveness after the installation of bus lanes. 

The following formulas can be used to calculate the t-score: 

EA t = 
FG (EAA)A 

�̅ = (AA�AA1AAA−AAA�AA2AA)A 

Here, t = t-statistic 

�̅ = mean difference in MOE 

��(A�A)A = standard error of differences 

m1 = MOE at before scenario 

m2 = MOE at after scenario 

3.3.4 Regression Analysis 

The relationship between bus travel times and the independent variables was explored by 
conducting a multiple regression analysis. The regression model incorporated both the peaks (P) 
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and also the presence/absence of bus lanes (BL). The multiple regression model for bus travel times 
can be represented as: 

TT = βo + β1L + β2DT + β3BD + β4BL + β5P + β6BC + ε 

Where TT = Travel Time 

L = Length of the Route between Served Bus Stops 

DT = Average Dwell Time 

BD = Bus Travel Direction 

BL = Presence of Bus Lane 

P = Peak Period 

BC = Average Percentage of Buses Using Bus Lane 

The term βo is the intercept and the items in the βk series (k = 1 through 6) are the regression 
coefficients for the predictors. Further, ε is the error residual (distributed error). 

The assumptions of multiple linear regression were reviewed by testing for normality of errors, 
homoscedasticity, and multicollinearity, as discussed below. 

Normality of Errors 

The errors obtained for a multiple regression model (i.e., the residuals) should demonstrate a 
normal distribution. The errors should explain the relationship between predictor and target 
variables. This can be observed with a normal probability plot representing the observed cumulative
probabilities versus the expected cumulative probabilities. An example of the normal probability 
plot displaying a straight line is shown in Figure 26. The project team presents a similar normal 
probability plot of the expected and obtained residuals in the results section of this report. 
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Figure 26: Example of a Normal Probability Plot 

EX
PE

CT
ED

 R
ES

ID
U

AL
S 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1 

OBSERVED RESIDUALS 

Multicollinearity 

Multicollinearity exists if two or more predictor variables are highly correlated with each other. 
The prediction of a model is affected by multicollinearity since it becomes harder to determine 
which predictor variable affects the target the most. The Variance Inflation Factor (VIF), ratio of 
the variance of the model with multiple variables to the variance of the model with one variable, is 
one test that can be used to check for multicollinearity. VIF values of greater than 10 indicate 
multicollinearity. The tolerance level (values less than 0.1) and correlation values greater than 0.5 
(positive or negative) also indicate the presence of multicollinearity. 

Homoscedasticity 

Homoscedasticity exists when the variances along the line of best fit remain similar at any point 
along the line. If there is no homoscedasticity, there is inaccuracy in the tests of regression 
coefficients. The regression standardized predicted value plotted against the regression standard 
residual is used to check for homoscedasticity. Homoscedasticity exists if distribution about the 
zero line appears to be even, as can be observed in Figure 27. The project team checked for the 
homoscedasticity of the variables used in this study. 
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Figure 27. Example of a Scatter Plot Showing Homoscedasticity 
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3.3.5 Evaluation for Regression Analysis 

The multiple regression models were evaluated using the p-values of the F-test, R2, and adjusted 
R2 values. These evaluative parameters are typically used to assess the performance of the models. 

F-test 

The F-test evaluates the null hypothesis that all regression coefficients are equal to zero. The 
alternative hypothesis is that at least one regression coefficient is not zero. Hence, the F-test can 
be used to check whether the relationship between the target and the set of predictors is statistically 
significant. The F-test is given by: 

��� 
� ��������� = ��� 

where MSM is the mean of squares for the model and MSE is the mean of squares for the error. 
The p-value is checked to see the statistical significance of the F-statistic. The significance level 
for this study was set at 5%. 

R2 (Coefficient of Determination F-test) 

The coefficient of determination, R2, is a measure of the goodness of fit of a model. It is defined 
as the percentage of the variance of the dependent variable that can be explained by the model. R2 

is expressed mathematically as: 

��� − ��� 
�Q = ��� 
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where 

��� = Sum of Squares Total (sum of the squares of the difference of the dependent variable 
and its mean) 

��� = Sum of Squares of Error (sum of the squares of the difference of the predicted dependent 
variable from actual values of the data) 

R2 typically increases when predictors are introduced to the model. For this study, the multiple 
regression model used six predictor variables that have been discussed in section 3.3.4. However, 
the increase might not result in the actual improvement of the model and indicate overfitting of 
the model. 

Adjusted R2 

R2
adjusted is a measure of the percentage of the total variance in the dependent variable that is 

explained by the model. R2
adjusted considers the model’s degrees of freedom, penalizing the addition

of too many predictor variables (in general) thereby increasing the R2. Hence, R2
adjusted will decrease 

as independent variables are added if the increase in model fit is not enough to make up for the 
loss of degrees of freedom. It is expressed as: 

1 − 
��� Q =�RESTUVWE ��� 

where ��� = Mean of Squares Total 

��� = Mean of Squares for Error 

3.3.6 ANN Model Development 

Neural Designer software was used to develop a predictive ANN model and determine the bus 
travel times on the limits of the study where the bus lanes have been installed. The software is a 
data analytic tool that incorporates neural networks to recognize patterns and make predictions 
from the data. Since the bus lanes do not stretch over the entire length of the selected bus routes, 
data was only obtained from segments that were selected for the study. 

The software uses a technique called approximation, whereby the neural network learns from the 
input-target examples provided by the user. The goal of the process is to obtain a good fit for the
target variable (bus travel time, in this case) based on unknown data and represent it as a function. 

The project team filtered WMATA data to obtain the bus travel times as well as other predictor 
variables that were assessed to predict travel times. The general form of the matrix containing the
predictors and the target (bus travel time) is represented in Table 5. 
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Table 5. Sample Peak Period ANN Data Matrix Model for a Bus Route 

Trip 
ID 

Length 
of 
Route, 
X1 

Average 
Dwell 
Time, X2 

Bus 
Travel 
Direction, 
X3 

Presence 
of Bus 
Lane, X4 

Peak 
Period, 
X5 

Average 
Percentage of 
Buses Using Bus 
Lane, X6 

Travel 
Time, Y 

1 A D G J M P Y1 

2 B E H K N Q Y2 

3.. C F I L O R Y3 

… - - - - - - -

500 S T U V W X YN 

The data set was split in the Neural Designer software into a training set (75%) and a testing set 
(25%). Training was conducted through an iterative process of feed forward and error-back 
propagations until the gradient normalization goal or the stopping criterion of 1,000 epochs
(iterations) was met. Development (learning) of the model was achieved using the training dataset
while the testing dataset was used to validate the model. The parameters that were adjusted in the 
software to analyze the data set are as follows. 

Perceptron Layers 

The model was trained using multilayer perceptron (MLP). Perceptron layers consist of neurons 
that enable the neural network to learn. Numerical values are inputs (X1, …, Xn) for the perceptron 
neurons in a network to produce a numerical output y. The output is also affected by the 
combination of bias and the sum of individual weights of independent variables (w1, …, wn). 

The MLP used for this research consisted of three layers: input layer, hidden layer, and output 
layer. A typical ANN architecture is presented in Figure 28. The project team presents the ANN 
architecture obtained during the neural network process in this report. 
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• Inputs 
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Figure 28. Example of an ANN Architecture 

Data Standardization 

The range and the units of the predictor variables used in the study were not similar. For instance, 
a value X1 (length between two bus stops) could be greater than 1000 feet while the value for X6 
(average bus compliance) could be 50%. To make the values of all predictor variables in the data 
set comparable, an automatic scaling layer was introduced in the neural network learning model. 
Hence, comparable values were processed by the software for neural network analysis. After the 
training, the output needed to be expressed in seconds, which is why the minimum and maximum
unscaling method was employed for variables scaled for the analysis to scale it back to the original 
units. 

3.3.7 Training Strategy 

The goal of neural network approximation is to predict the value of the target with the minimum
possible error by incorporating the loss function. The training strategy is the optimization process 
to obtain the minimum possible loss/model error. Lower error indicates better model accuracy. 
Minimizing the error can be achieved by finding a set of parameters that determine an ideal fit of 
the neural network. The training strategy consists of the optimization algorithm and the loss index. 

Optimization Algorithm 

The optimization algorithm involves varying the values of the independent variables during the 
training iteration or epoch to find the minimum loss. The optimization algorithm terminates the 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  48 



 

    

               
 

       

     

      

            

              
             
               

            
             

        

              
         

    

 

                
                  

         

 

                 

                   
            

              

 

            
               

               
               

learning process after specific criteria are met. The common stopping criteria that stop the learning 
process are: 

1. Loss reaching the minimum desired value, 

2. Reaching maximum number of epochs, 

3. Reaching maximum computing time, or 

4. Increment of the selection subset error (error arising from selection dataset) while training. 

For this study, the Quasi-Newton optimization algorithm was used to train the bus operation 
dataset model. The Quasi-Newton method is an optimization algorithm that is based on Newton’s 
method that finds the stationary point of a function (where the slope is zero). In general, while 
Newton’s method is used for approximating quadratic functions by using the first- and second-
order derivatives to find the stationary point, Quasi-Newton method involves the analysis of the 
successive gradient vectors to reduce computational cost.78 

The algorithm is the default optimization method in Neural Designer and is also recommended 
for training medium-sized data sets (10–1,000 variables, 1,000–1,000,000 instances) to yield 
functions with minimum loss. 

Loss Index 

The loss index evaluates the performance of a neural network by assessing its parameters. At the 
lowest value of the loss index, the slope is zero. It is a sum of a regularization term and an error 
term (or terms) which can be represented mathematically as: 

�� = �� + �� 

where LI is the loss index, RT is the regularization term, and ET is the error term. 

The gradient is zero when the loss index is at a minimum. To prevent overfitting of the data during
the learning process, a regularization term is introduced to control the complexity of the neural 
network model. The error term measures how well the neural network fits the dataset. 

3.3.8 Model Selection 

Model selection involves finding the optimal network architecture with the best generalization 
properties by adjusting the neurons or inputs to minimize the error for the neural network. To 
improve the accuracy of the training model, an order selection process was used after which another
training was performed to generate an adequate fit for the bus travel time data. This process 
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involves the optimization of the neural network architecture to present the optimal number of 
neurons in neural designer software thereby decreasing the errors. Hence the final neural network 
architecture that can be used to find the bus travel time for this project was obtained after the order
selection process. 

3.3.9 Model Testing and Evaluation 

Neural Designer was used to generate mathematical expressions for bus travel times within the 
limits of the study. Finally, the documented errors of the test data set were evaluated by obtaining
the normalized squared error (NSE), which is the default error term for approximation problems, 
and mean percentage error (MPE), to determine the accuracy of the models. NSE can be 
mathematically represented as: 

∑(� − �)Q
��� = �� 

where 

NSE = Normalized Squared Error 

O = Outputs 

T = Targets 

NC = Normalized Coefficient. 

MPE generates error while comparing the predicted values to the observed values and can be 
represented as: 

] ∑|`ab|��� = ∗ 100
^ ` 

where 

A = Observed values 

P = Predicted values 

n = Number of observations. 
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4. Results 
4.1 Summary Statistics 

This section presents an overview of the WMATA bus data obtained for the selected routes before
and after the installation of DBLs. The distribution of data points used to develop the models is 
presented in Figure 29 sorted by peak period. A data point for the purpose of the study was 
considered to be a valid bus event from which all variables (X1 through X6) could be extracted. 

Figure 29. Total Number of Data Points Obtained per Peak Period 
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From Figure 29, note that a total of 122, 274, 349, and 308 data points were obtained for bus 
routes 7Y, 32, 30S, and 30N, respectively. Buses for route 7Y did not operate in the AM peak 
period throughout the duration of the study. In all, the data set for the multiple regression as well 
as the neural network analyses consisted of 1,053 bus events. Hence, the number of bus events for 
both the studies to provide meaningful results was adequate. Figure 30 presents a distribution of 
the data points before and after the installation of the bus lanes on H Street and I Street (NW). 
Figure 31 shows the total number of data points before and after installation. 
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Figure 30. Data Points Obtained for the “Before” and “After” Scenarios 

Distribution of Data Points "Before" and "After" 
Installation of Bus lanes by Bus Routes 
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Figure 31. Distribution of “Before” and “After” Scenario Data 
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Table 6. Descriptive Statistics 

Scenario Mean Standard Deviation 

Mean Standard 
Deviation 

Minimum Maximum 95% Confidence 
Interval 

Before L (X1) 1240.62 382.92 126 3936 1212.02–1269.22 

DT (X2) 19.46 34.95 1 379 16.85–22.07 

TT (Y) 123.23 69.65 22 567 118.02–128.43 

After L (X1) 1225.95 370.11 214 2228 1187.69–1264.21 

DT (X2) 18.63 32.85 1 294 15.23–22.02 

TT (Y) 118.35 58.01 25 445 112.36–124.35 

Table 6 presents the mean and standard deviation of independent and dependent variables such as
length of the route, average dwell time of buses, and bus travel time obtained from the filtered 
WMATA AVL data (real-time bus logs recorded during bus operation). Finally, the average dwell 
time of WMATA buses during different peaks before and after the installation of bus lanes has 
been represented in Figure 32. 
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Figure 32. Average Dwell Times of Buses by Time of the Day 

Average Dwell Time of Buses "Before" and "After" 
the Installation of Bus Lanes 

30 

From Figure 32, note that the average dwell time for WMATA buses for both the AM and PM 
peaks decreased after the installation of DBLs. The study considered the overall average values 
during both peaks for the before and after scenarios and hence, did not account for the statistical 
significance of dwell times. The lowest average dwell time was obtained for the AM peak period 
after the installation of bus lanes (11.62 seconds). 

4.2 Measures of Effectiveness 

This section presents the results of the level of service (LOS) analysis conducted to determine the 
MOEs of the study intersections for the “before” and “after” scenarios. The 2016 Highway 
Capacity Manual (HCM) procedures were followed to conduct the LOS analysis in the Synchro 
10TM software program. Turning movement counts obtained at all the intersections were analyzed 
in PETRAPro software to obtain the AM and PM peak hours along with respective peak hour 
factors and heavy vehicle percentages. These metrics were used in models developed in Synchro 
10 TM to obtain intersection MOEs. Synchro computes the MOEs through traffic simulation of 
existing criteria following the principles of the Highway Capacity Manual. The team modeled the 
H Street and I Street, NW networks in Synchro and used the metrics that were obtained from the
PETRAPro software at every intersection. The team developed simulation models to represent all 
days of video data collection for both peaks. For the study, the project team has reported the 
approach delays for the vehicles traveling on H Street and I Street (NW), as well as intersection 
control delays (due to traffic signals) that were obtained from the Synchro simulations,. The 
approach delays for both the scenarios (during AM and PM peaks) for the five study intersections
obtained from the Synchro Analysis have been presented in Table 7. Table 8 presents the 
intersection control delays at all intersections for both scenarios. 
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Table 7. Approach Delays (in seconds) at the Study Intersections 

AM PEAK PM PEAK 

Month Date H & 
14th 

H & 
17th 

I & 
Vermo 
nt 

I & 
16th 

I & 
17th 

H & 
14th 

H & 
17th 

I & 
Vermo 
nt 

I & 
16th 

I & 
17th 

May 
2019 

May 7 32.1 32.3 23.9 26 * 31.9 37.2 19.6 16.4 * 

May 8 31.8 30.5 24.1 25.7 11.5 31.5 70.9 21.7 18.9 12 

May 9 * 29.3 23.9 24.8 10.7 * 38 20.4 17.2 11.1 

May 14 32.4 27.4 21.9 26.6 10.5 31.8 35.9 18.4 17.7 10.1 

May 15 31.4 29.1 23 25.1 * 31.8 38.2 19.8 16.6 * 

May 16 31.1 28.2 22.3 25.8 10.7 30.8 37.2 18.8 15.3 10.3 

June 
2019 

June 11 34 25.4 22.8 25.8 11.7 33 32.1 20.3 17.1 11.8 

June 12 32.3 25.5 23.2 25.8 13.8 32.9 30.5 19.4 16.7 14.1 

June 13 33 26.1 22 27.2 12 32.1 30.7 20.5 16.6 11.7 

June 18 30.9 26.3 21.9 24.9 13 33.4 33.4 21.4 16.3 12.8 

June 19 31.3 29.1 24.6 25.9 11.7 33.8 32.2 19.9 16.2 12.3 

June 20 31.7 28.3 22.4 25.8 12 30.9 35 20.9 15.3 14.8 

Septemb 
er 2019 

Sept 17 33 30.7 24.8 29.3 11.9 30.9 42.1 21.9 16.7 11.5 

Sept 18 31.9 43.6 24.2 22.9 11.2 32.4 51.7 21.6 15.4 11.9 

Sept 19 32.1 28.4 25.2 26.6 11.4 32.2 53.9 24.3 17 11.7 

Sept 24 31.1 28.6 24.5 26.5 11.5 33.1 45.4 16.7 17.4 11.5 
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AM PEAK PM PEAK 

Sept 25 33.2 30.6 25.9 26 11.5 33.6 44.2 16.6 16.8 11.5 

Sept 26 31.4 24.5 24.3 27 11.5 32.2 45.7 21.6 17.6 11.5 

October 
2020 

Oct 13 26.2 22.8 18.9 22.7 9.5 26.1 27.6 16.6 14.4 9.1 

Oct 14 26 23 18.5 22.5 9.5 26.9 28 16.4 14.4 9 

Oct 15 26 22.7 18.4 22.5 9.4 26.2 27.7 16.5 14.4 9 

Oct 20 25.9 23.3 18.7 * 9.6 27 28.3 16.9 12.8 9.4 

Oct 21 26.4 23.2 18.9 * 9.5 26.3 27.7 16.6 * 9.3 

Oct 22 26 23 18.7 22.8 9.5 26.1 27.9 16.7 * 9.3 

* = MOE was not obtained 
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Table 8. Control Delays (in seconds) at the Study Intersections 

AM PEAK PM PEAK 

Month Date H & 
14th 

H & 
17th 

I & 
Vermo 
nt 

I & 
16th 

I & 
17th 

H & 
14th 

H & 
17th 

I & 
Vermo 
nt 

I & 
16th 

I & 
17th 

May 
2019 

May 7 22.8 29 32.4 23.4 * 23.8 32.6 27.3 20.5 * 

May 8 23.5 67.9 27.6 23.2 253.4 24 48.5 27.3 20.5 258. 
6 

May 9 * 23.5 31.2 22.4 27.3 * 24.3 27.2 20.7 22.1 

May 14 23.2 24.3 31.8 23.9 30.2 23.7 22.7 33 21.4 24.1 

May 15 22.7 31.9 26.9 22.7 * 23.3 24.4 27.5 20.1 * 

May 16 22.4 31.6 35.6 23.2 23.7 22.4 23.1 52 19.6 25.3 

June 
2019 

June 11 24.5 20.5 22.7 23.1 25.3 23.8 22 23.8 18.7 20.3 

June 12 23.3 35.3 23 23.2 24.9 23.7 25.4 23.4 18.8 19.3 

June 13 23.8 39.3 22.3 24.5 23.5 23 43.2 22.9 18.9 19.7 

June 18 22 39.3 21.9 22.5 24.3 24.3 21.9 24 18.8 20.7 

June 19 22.6 31.9 24.1 23.5 25.1 24.9 33 23.3 18.5 22 

June 20 22.7 43.4 22.5 23.2 23.1 22.4 22.7 23.6 19.6 20.6 

Septemb 
er 2019 

Sept 17 25.3 23.9 24.2 26.6 24.9 22.9 37.1 22 20.6 19 

Sept 18 24.4 45.5 23.7 22.9 24.7 24.1 28.8 21.7 19.1 18.6 

Sept 19 23 33 24.6 23.9 22.2 25 29.8 24.2 19.6 19.1 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  57 



 

    

      

            

            

            

 
 

            

            

            

            

            

            

     

               
                 
 

 

 

 

 

 

 

 

 

AM PEAK PM PEAK 

Sept 24 24.5 46.2 24 23.8 24.3 23.3 27.5 18.4 21 21.9 

Sept 25 26.8 40.4 25.3 23.4 25.4 30.2 26 18.4 19 20.5 

Sept 26 50.5 23.5 43.8 24.1 25.4 30.9 42.1 21.9 19.7 20.5 

October 
2020 

Oct 13 17.4 13.1 19.1 22.5 23.5 17.7 15.7 18.5 14.8 20.8 

Oct 14 17.1 13.1 18.9 22.4 24.1 18.3 16.2 18.9 14.5 22.2 

Oct 15 17 18.5 18.8 22.4 25.4 18 15.7 18.4 14.5 22.3 

Oct 20 17.1 13.7 18.9 * 23.5 19 16.9 18.5 16.4 20.3 

Oct 21 17.6 13.3 19 * 24.4 18.1 15.6 18.5 * 21.4 

Oct 22 17.4 13.4 18.9 22.5 23.5 18 16.3 19.4 * 21.1 

* = MOE was not obtained 

The average approach delays, as well as the control delays for the “before” and “after” scenarios for 
all five study intersections in both AM and PM peaks, have been presented in Figures 33 through 
36. 
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Figure 33. Comparison of Average Approach Delays during AM Peak at 
the Study Intersections Before and After Installing Bus Lanes 
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Figure 34. Comparison of Average Approach Delays during PM Peak at the Study
Intersections Before and After Installing Bus Lanes 
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Figure 35. Comparison of Average Control Delays during AM Peak at the Study 
Intersections Before and After Installing Bus Lanes 
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Figure 36. Comparison of Average Control Delays during PM Peak at the Study 
Intersections Before and After Installing Bus Lanes 
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From Figures 33 through 36, it can be observed that generally, the average approach delays, as well 
as the control delays at all the study locations for both AM and PM peaks, decreased slightly. It 
appears that only the average control delays for H Street and 14th Street (NW), as well as I Street 
and 16th Street (NW), increased during the AM peak after the implementation of bus lanes 
(Figure 35). Hence, the analysis demonstrates lower overall delays (both the approach as well as 
the control delays) after the installation of the bus lanes. This indicates that the quality of traffic 
flow at the intersections was better (on average) by implementing dedicated bus lanes on the 
corridors of H Street and I Street (NW). At the intersections where the control delays were 
observed to be higher post bus lane installation, DDOT could consider optimizing signal timing 
to improve general traffic flow. 

4.3 Dependent T-Test 

This section presents the results of the statistical analysis conducted in SPSS to test for statistically
significant differences between the MOEs (approach delays and control delays) for both AM and 
PM peak periods due to the implementation of DBLs. The dependent t-test was used, which 
compares two means based on related/repeated data from matched samples. For this study, the 
matched samples are the MOEs obtained at the study intersections (for both peaks) before and 
after the installation of bus lanes. Table 9 presents the results of the paired t-test for approach 
delays on H Street (NW) and I Street (NW). The results of the t-test to determine any statistically 
significant differences between the control delays are presented in Table 10. 

Table 9. T-Test Results for Approach Delays 

Paired Samples T-Test 

Peak 
Period 

Variables Mean 
Diff. 

Std. 
Dev 

Std. 
Error 
Mean 

95% CI of the 
Difference 

t df Sig. 

Lower Upper 

AM Approach Delay 
Before – 
Approach Delay 
After 

1.59 3.45 0.47 0.66 2.53 3.43 54 0.00 
1 

PM Approach Delay 
Before – 
Approach Delay 
After 

1.53 5.03 0.68 0.17 2.89 2.25 54 0.03 
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It can be observed from Table 9 that the mean differences in the approach delays of the study 
intersections in the AM and PM peaks were 1.59 and 1.53 seconds per vehicle. These differences 
were determined to be statistically significant at a 5% level of significance. On average, the vehicles 
traveling on approaches of H Street and I Street (NW) had significantly lower approach delays in 
the AM peak (t(54) = 3.43, p = 0.001) and PM peak (t(54) = 2.89, p = 0.03) after the installation 
of bus lanes. 

Table 10. T-Test Results for Control Delays 

Paired Samples T-Test 

Peak 
Period 

Variables Mean 
Diff. 

Std. 
Dev 

Std. 
Error 
Mean 

95% CI 
Difference 

of the t df Sig. 

Lower Upper 

AM Control Delay 
Before – Control 
Delay After 

3.12 9.67 1.3 .50 5.73 2.39 
54 

.02 

PM Control Delay 
Before – Control 
Delay After 

3.67 7.72 1.04 1.58 4.76 3.53 54 <.00 
1 

From Table 10, note that the mean differences in the control delays of all vehicles at the study 
intersections in the AM and PM peaks were 3.12 and 3.67 seconds per vehicle. These differences 
were also determined to be statistically significant at a 5% level of significance. On average, the 
vehicles experienced significantly lower control delays in the AM peak (t(54) = 5.73, p = 0.02) and 
PM peak (t(54) = 3.53, p < 0.001) after the installation of bus lanes on H Street and I Street (NW) 
at all five intersections. Appendix A presents the complete results of the paired samples t-test 
analysis as SPSS output. 

4.4 Regression Analysis 

This section presents the results of the regression analysis developed to predict the travel time of 
buses within the limits of the study. A model was developed for the multiple linear regression 
assumed the form: 

�� = �f + �]� + �Q�� + �g�� + �h�� + �i� + �j�� + �� 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  62 



 

    

 

   

         

    

    

     

   

        

                 
         

             

            

           

             
                
                

        

        
            

              
             

       

  

where 

TT = Travel Time 

L = Length of the Route between Served Bus Stops 

DT = Average Dwell Time 

BD = Bus Travel Direction 

BL = Presence of Bus Lane 

P = Peak Period 

BC = Average Percentage of Buses Using Bus Lane 

The level of significance for testing the models in SPSS was set to 5%. The following evaluative 
criteria were used to measure the performance of the models: 

1. Statistical significance (using the p-values of the F-statistics with 5% significance level) 

2. Goodness of fit (using the R2 and the adjusted R2 values) 

3. Statistical significance for the models’ predictors (p-values of t-statistics). 

While the t-test for each of the predictor variables tests the model against the null hypothesis that 
the MOEs of intersections improved after installing the bus lanes, the F-test compares the fit of 
the regression model with the fit of a null model with an intercept (�f) but no predictor variables 
(where all regression coefficients are set to 0). 

Correlations were obtained to represent the dependencies between predictors (independent 
variable) and the output (dependent variable). Correlation ranges from -1 to 1 where values close 
to -1 and 1 signify strong negative and positive correlations, respectively. A value close to 0 signifies 
a weak correlation or no correlation. Table 11 presents the correlations between the independent 
and dependent variables obtained from the AVL data. 
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Table 11. Input-Target Correlations 

Inputs Correlation 

L (X1) 0.267 

DT (X2) 0.075 

BD (X3) -0.037 

BL (X4) 0.033 

P (X5) 0.026 

BC (X6) -0.018 

The highest and the lowest correlations with travel time were obtained for the variables X1 (Length 
of Route) and X6 (Average Percentage of Buses Using Bus Lane), respectively: see Table 11. The 
variables for bus direction (X3) and bus compliance on the bus lane (X6) were observed to have 
negative correlations with the dependent variable (bus travel time). Table 12 presents the results 
of the regression analysis using SPSS and the statistical significance. 
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Table 12. Results of the Regression Analyses for AM Peak Period 

MODEL SUMMARY 

R R-Squared Adjusted R-Squared 44.552 

0.321 0.103 0.098 158.240 

ANOVA SUMMARY 

COEFFICIENTS 

Model df F Sig .

Regression 6 19.112 0.000 

Variable Unstandardized B t Sig. 

Constant 53.968 5.894 0.000 

L (X1) 0.04 10.184 0.000 

DT (X2) 0.236 4.95 0.000 

BD (X3) -8.312 -2.275 0.023 

BL (X4) 3.968 1.334 0.182 

P (X5) 6.2 2.034 0.042 

BC (X6) 0.025 0.372 0.743 

The results showed that the multiple regression model to determine the bus travel time within the
study corridors is statistically significant, at a 5% level of significance. The obtained F-value was 
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19.11 with six degrees of freedom, which was significant (p-value < 0.05). The effects of all the 
independent predictor variables except the presence of bus lane (BL) and average bus lane usage 
compliance (BC) were determined to be statistically significant at the 5% significance level (p-
values < 0.05). The equation obtained for the model, with an R2 value of 0.103, was: 

TT = 53.97 + 0.04L + 0.24DT – 8.32BD + 3.97BL + 6.2P + 0.03BC. 

4.5 Model Testing 

4.5.1 Normality of Errors 

Assumption for normality of errors was tested using the normal probability plot where the observed
values of standardized residuals were plotted against the expected values of the standardized 
residuals. By visually inspecting the plots for the regression model presented in Figure 37, it can 
be observed that the curve closely follows the diagonal line of the plots. Hence, the errors were 
observed to be normally distributed. 

Figure 37. Normality Probability Curve Obtained in SPSS 

4.5.2 Multicollinearity 

The test for multicollinearity was performed and the collinearity statistics results are presented in 
Table 13. Generally, a variance inflation factor (VIF) above 10 indicates a high correlation and is 
cause for concern about the model developed. Other researchers suggest a more conservative level, 
indicating that a VIF of 2.5 or above prompts concern about multicollinearity. Also, in general, a 
tolerance value below 0.25 indicates that multicollinearity might exist, so further investigation is 
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necessary. From the table, it can be observed that all values for tolerance were greater and 0.1 and
the VIF values were lower than 10. Hence, there was no multicollinearity between the independent
variables. 

Table 13. SPSS Collinearity Statistics 

Coefficients 

Model Collinearity Statistics 

Tolerance VIF 

(Constant) 

L (X1) 0.910 1.099 

DT (X2) 0.889 1.125 

BD (X3) 0.593 1.687 

BL (X4) 0.979 1.021 

P (X5) 0.930 1.075 

BC (X6) 0.606 1.651 

4.5.3 Homoscedasticity 

The residual standardized predicted values were plotted against the regression standardized 
residuals in SPSS to check for homoscedasticity. Figure 38 represents the regression plot which 
shows a relatively even distribution about the zero line. Hence, the variances of the residuals of the 
predictors were the same for all values of the targets, and homoscedasticity was observed. 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  67 



 

    

     

 
 

  

               
              

                
                

               
       

 

           
            

             
           

              
    

             
                

               

:::, 
"C .iii 

4 

Q) 2 
a::: 
"C 
Q) 
N 

'6 

Scatterplot 

Dependent Variable: Travel Time, Y 

;:e! <I 
+ • '--•----

•• • • 
+ + + ,. 

... 
Ill 
-c a t--------1 
C 

&- ,.. : 
• ,-+-----·-~--------t,---------. : .... _ . Ill .... 

en 
C 
0 • iii 
::: -2 

Cl 
Q) 

a::: 

-4 

• " 

-2.5 

• • •• •• 
• 

a.a 2.5 5.0 

Regression Standardized Predicted Value 

• 

+ + 

• 
7.5 10.0 

Figure 38. Homoscedasticity Regression Plot 

4.6 Neural Network 

The multiple linear regression analysis provided an overview of the linear fit of the data. Although 
the regression model was statistically significant, it could only explain approximately 10% of the 
variance in the bus travel time (see Table 10). However, neural networks can consider and analyze 
non-linear relationships in the data. The results of the neural network analysis to develop the travel 
time model are presented in this section. The AVL data matrix was analyzed using the Quasi-
Newton algorithm in the Neural Designer software. 

4.6.1 Quasi-Newton Optimization Algorithm 

The Quasi-Newton optimization algorithm is the default optimization strategy in Neural 
Designer software which is recommended for training data sets with 10–1,000 variables or 1,000–
1,000,000 instances. A previous study conducted by Arhin et al. to predict bus travel time shows 
that Quasi-Newton algorithm with 2 perceptron layers yielded the lowest errors during the 
approximation process. Hence, the AVL data matrix was subjected to 2 perceptron layers for bus 
travel time prediction. 

The inputs used for the analysis were scaled using the automatic scaling method where the size of 
the scaling layer was 6 (number of inputs). An unscaling layer was also used to scale output back 
to the original units. The minimum and maximum methods were used, and the size of the 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  68 



 

    

               
 

          
   

  

                          

       

     

     

     

     

     

 
     

 

               
             

               
 

 

 

 

 

 

unscaling layer was 1 (number of outputs). The scaling and unscaling values are presented in Table 
14. 

Table 14. Scaling and Unscaling Values for Quasi-Newton Analysis 
(Three Perceptron Layers) 

Scaling Layers 

Peak Periods Minimum Maximum Mean Deviation 

Scaling Layer X1 (L) 126 4.29e+09 2.47e+07 3.25e+08 

X2 (DT) 1 4.29e+09 8.24e+06 1.88e+08 

X3 (BD) 0 1 0.496 0.5 

X4 (BL) 0 1 0.34 0.474 

X5 (P) 0 1 0.342 0.475 

X6 (BC) 3.9 75.8 43.8 23.7 

Unscaling 
Layer 

Y (TT) 22 567 121 65.8 

Figure 39 shows the neural network architecture of the perceptron layers that was obtained for the
model following the order selection. Of the two perceptron layers, the activation functions of the 
first and second layers for the analysis were set to hyperbolic tangent and linear (default software 
settings), respectively. 
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Figure 39. Neural Network Architecture Obtained in Neural Designer 

In Figure 39, the yellow, blue, and red circles represent the scaling neurons, the perceptron 
neurons, and the unscaling neurons, respectively. Perceptron layers are responsible for applying 
different weights to the input variables during the learning process to minimize the error made in 
approximation. 

Neural network training was followed by order selection to obtain the ideal selection model 
providing an adequate fit for the neural network architecture. Another training was performed to 
obtain the final training and selection errors. The performance of an approximation model can be 
assessed by comparing the predicted values against the actual values of the testing data set. The 
results of the neural network training using the Quasi-Newton algorithm are presented in Table 
15. Figure 40 shows the decrease in training and selection errors in each epoch during the training 
process. 
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Table 15. Quasi-Newton Method Results for Two Perceptron Layers 

Error Value 

Initial Training Error 6.877 

Final Training Error 0.984 

Initial Selection Error 8.423 

Final Selection Error 0.995 

Epochs Number 28.00 

Elapsed Time < 1 sec 

Stopping Criterion Gradient norm goal 

Figure 40. Neural Network Architecture Obtained in Neural Designer 

In each epoch, the neural network evaluates all data in the training dataset only once whereby the 
Normalized Squared Error is calculated. As the training progresses, the model converges to not 
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only reduce the error but also increase the predictive accuracy. The blue and orange lines in Figure 
40 represent the decreasing trend of training and the selection errors, respectively. The initial 
values of training and selection errors at 0 epoch were 6.88 and 8.42. The training was completed 
in 28 epochs after which the training and selection errors (final) were reduced to 0.98 and 0.99, 
respectively. 

The approximation error metrics were assessed using the normalized squared errors (NSE), the 
default error term for approximation problems. Table 16 presents the NSEs obtained during the 
neural network training, selection, and testing instances. In addition, mean absolute errors (MAE) 
and mean percentage errors (MPE) were also obtained following the neural network training to 
determine the model’s accuracy. MAE is a measure of errors used to determine a model’s predictive 
accuracy, and MPE is the average of percentage errors between paired observations. The mean 
absolute and percentage errors of the testing data set are presented in Table 17. The Neural 
Designer software output containing the decrease in errors during neural network training, 
together with the summary of the error statistics, is presented in Appendix C. 

Table 16. Normalized Squared Errors for Training, Selection and Testing Instances 
(Two-Layer Quasi-Newton Method) 

Error 

Training Error 0.984 

Selection Error 0.995 

Testing Error 0.973 

Table 17. Error Statistics for Quasi-Newton Method 

Error 

Absolute Error 42.03 

Percentage Error 7.71 

It can be observed from Table 16 that the lowest error was obtained for the testing dataset (0.97).
A lower testing error compared to the training and selection errors indicate that there was no over-
fitting of the model. Hence, the accuracy of the model is reliable to predict the bus travel time. 
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The testing data set resulted in a low MPE of 7.71%. A mathematical expression was also obtained 
following the neural network analysis to determine the bus travel time within the limits of the 
study. The equation is: 

TT = 0.5*(Scaled_Y+1)*545 

The value of Scaled_Y is presented in Appendix D. 
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5. Discussion 
This research aimed at determining the impacts on the performance of transit buses as well as the 
intersection performance after installing DBLs on selected corridors in Washington, DC. 
Moreover, neural network models for predicting the travel times of buses traveling on such bus 
lanes were also developed. The literature reviewed showed that the travel times of the buses may 
be impacted by time of the day, vehicle arrival and departure, passenger boarding and/or alighting,
speed, distance, and en-route traffic conditions, among other factors. 

The implementation of the DBLs on the segment of H Street (NW) between 19th Street (NW) 
and 13th Street (NW) and the segment of I Street (NW) between 21st Street (NW) and 13th Street 
(NW) by DDOT was completed by June 2019. The five study intersections within the segments 
that were selected for the study were: 

1. H Street and 14th Street (NW) 

2. H Street and 17th Street (NW) 

3. I Street and 15th Street/ Vermont Avenue (NW) 

4. I Street and 16th Street (NW) 

5. I Street and 17th Street (NW) 

Non-intrusive video data of the study intersections were reviewed to obtain the vehicular turning 
movement counts as well as observe the compliance of buses and other passenger vehicles while 
utilizing the DBLs at the intersection. “Before” data from May and June 2019 was compared with 
the “after” data from September 2019 and October 2020. Measures of Effectiveness required for 
the analysis were obtained by analyzing the AM and PM peak hour TMCs on PETRAPro and 
Synchro Traffic Simulation Software. Approach Delays on the eastbound approach of H Street 
(NW) and the westbound approach of I Street (NW) intersections along with the overall 
intersection control delays were obtained for the “before” and “after” scenarios. These measures of 
effectiveness were essential in determining the level of service (quality of intersection operations 
under fixed conditions like intersection geometry, signal timing, vehicular volume, etc.). 
Dependent t-tests were used to determine any statistically significant differences between the 
approach delays and intersection control delays “before” and “after” the DBLs for both AM and 
PM peak periods. The results showed that the approach delays and intersection control delays at 
the study intersections generally decreased after the installation of DBLs. In addition, the 
statistical analysis showed that the vehicles traveling on H Street and I Street (NW) experienced 
significantly lower approach delays as well as control delays during both AM and PM peaks after 
the installation of bus lanes (at 5% level of significance). Vehicles traveling on the eastbound 
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approach of H Street (NW), the westbound approach of I Street (NW), and all approaches of the 
five study intersections generally experienced lower delays (in terms of seconds per vehicle). Lower 
delay directly translates to better traffic flow. The decrease in the approach delays indicates that 
the traffic flow (buses and non-transit vehicles) on the eastbound approach of H Street and 
westbound approach of I Street (NW) did not degrade in September 2019 and October 2020 (after
scenario). Moreover, in general, the average control delay (a delay that arises due to the traffic 
signal) experienced by the vehicles at all study intersections was also low when the dynamic bus 
lanes were implemented. At the intersections where the average control delays were found to be 
higher, future studies could consider either optimizing traffic signals on the routes or 
implementing transit signal priority to review the general traffic performance. Hence, the results 
suggest that there was an improved level of service at the study intersections following the 
implementation of DBLs on the segments of H Street and I Street (NW). 

Further, WMATA provided transit bus AVL data (real-time bus operation logs) for four selected
bus routes (7Y, 32, 30N, and 30S) operating on H Street and I Street (NW). The data for the bus 
routes were filtered to extract variables including the length of the route between the bus stops and
the dwell time of buses traveling in both east- and westbound directions in the AM and PM peak 
periods for the before (May 2019, June 2019) and after (September 2019, October 2020) months. 
AVL data points at WMATA bus stops with the following service IDs were used to extract 
variables for the study: 

H Street and 18th Street, NW - 1001148 

H Street, NW and 17th Street, NW - 1001133 

H Street and Madison Place, NW - 1001141 

H Street and 14th Street, NW - 1003467 

I Street and 14th Street, NW - 1001191 

I Street and 15th Street/ Vermont Avenue, NW - 1001185 

I Street and 17th Street, NW - 1001183 

I Street and 18th Street, NW - 1001181 

The variables along with the average monthly percentage of buses using the bus lane for travel (i.e.,
compliance) were linked to the individual bus travel time data points to create a matrix which was 
used in the multiple linear regression analysis as well as the neural network analysis. 
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The regression analysis on the bus data was conducted to investigate the relationship between the 
independent variables and the travel times of the buses. The analysis also generated an equation 
based on all the variables (predictors) to predict bus travel time. The independent variable length 
of the route between served bus stops had the highest correlation values with the dependent variable 
bus travel time. The variables presence of bus lane and average bus lane usage (compliance of the buses 
on DBLs) did not display strong correlations with the bus travel time. The F-statistic showed that 
the model explained 10% of the variance in the bus travel time and was statistically significant at a
95% confidence interval (p-values < 0.05). Tests for normality of errors, multicollinearity, and 
homoscedasticity were conducted to ensure that there was no bias in the data, no multicollinearity,
and approximately uniform distribution of variance between the residuals of the dependent, 
respectively. These tests were performed to meet the assumptions of multiple linear regression 
analysis. The multiple regression analysis, although statistically significant, could only explain 
around 10% (R2 = 0.103) of the variance in the dependent variable (bus travel time). Hence, the 
non-linear relationships between the dependent and independent variables were not considered by
the multiple regression analysis as the differences between the observed and predicted values were 
high. 

Hence, a neural network analysis was conducted to develop a predictive model for bus travel time 
on dedicated bus lanes using Neural Designer software to consider non-linear relationships 
between the dependent and independent variables. Neural network learning was achieved through 
approximation, which is a process of finding the value of the dependent variable based on the 
combination of different predictor values. More specifically, the Quasi-Newton algorithm (with 
two perceptron layers) was applied to the matrix with all the variables to obtain an equation that 
approximated travel time. Hence, the analysis considered the presence or absence of bus lanes as 
one of the independent variables. An order selection process was also performed to obtain the final 
neural network architecture of the predictive model. 

In the neural network training process, initial and final training, selection, and testing errors were 
obtained. Even though low errors are desired for a neural network, low training errors can result 
in overfitting. An overfit model performs well with the training data set but might yield higher 
errors while approximating the dependent variable with unknown data. The approximation error 
metrics (normalized squared errors) for the testing dataset was obtained to be 0.97 (lower than the
training error 0.98 and selection error 0.99), which indicated that the model was predicting bus 
travel times based on unknown data with great accuracy. A testing error that is lower than the 
training and selection errors ensures that the neural network is good at making generalizations to 
predict the bus travel time, and at the same time, not overfitting. The quality of the approximation 
models was tested by gauging the mean absolute error and the mean percentage error. These 
measures of errors compared the difference between the predicted output and the actual values of 
bus travel time. The low values of MAE and MPE indicate that the neural network model was 
predicting the values of the dependent variable with good accuracy. Hence, for future studies, one 
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constraint that can limit the potential of ANN predictability would be a lack of adequate data 
points since ANNs are highly data-dependent. 
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6. Conclusions and Recommendations 
This research explored the impacts of installing dedicated bus lanes (DBLs) on traffic operation at
intersections. Prior to this study, there had not been any study conducted in Washington, DC,
that compared the qualitative measures of effectiveness of intersections before and after installation
of bus lanes. Specifically, the project team evaluated the approach and control delays that were 
obtained from Synchro analysis. A neural network model was developed here that incorporated 
different variables such as time of the day (AM/PM peak) and presence/absence of bus lanes to 
predict the bus travel times on different segments. From the results, it can be concluded that for 
the H Street and I Street (NW) segments, the installation of bus lanes did not have a negative 
impact on the overall traffic operations. This could be supported by the fact that the measures of 
effectiveness such as approach delay and control delay experienced by a vehicle traveling on the 
same study segments/intersections were lower when the DBLs were present. Moreover, descriptive
statistics conducted on the AVL bus data revealed that the average travel time of the buses traveling
along the study segments in the “after” scenario was lower than the average travel time in the 
“before” scenario. The dwell times of the buses at the bus stops were also found to be lower after 
the installation of bus lanes during both AM and PM peak periods. Hence, WMATA can consider 
applying this methodology to other segments with busy bus schedules and multiple routes to 
evaluate the need for DBL implementation. Finally, neural network models can be used to 
approximate bus travel times on segments by simulating scenarios with DBLs to obtain accurate 
bus travel times. The performance of ANNs to accurately predict travel times by considering the 
presence and absence of dedicated bus lanes on segments of DC provides advantages over 
traditional models like historical data-based or multiple linear regression models. For instance, in 
this study, regardless of the multiple linear regression model being statistically significant, the 
obtained goodness of fit was a low of 10%. Hence, the accuracy of the ANN, which can be 
attributed to a low training error, outperforms the multiple linear regression model. Such 
implementation can be beneficial to not only improve WMATA’s bus service reliability but also 
alleviate general traffic delays. 

For future work, it is recommended that year-round data be analyzed to provide more insightful 
DBL usage (compliance) data as well as to improve the accuracy of the prediction models. Since 
ANN can perform better with more data, the same duration of post-DBL implementation data 
will also be required to compare the performance of intersections on other urban segments over 
time. This process would require working with WMATA to filter AVL data of existing bus routes 
to extract relevant variables for typical weekdays. The data along with simulation-based on bus 
lane usage by different vehicles from observational field studies can be used to assess the different 
measures of effectiveness of urban intersections. 
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T-Test 

Paired Samples Statistics 

Mean N Std. Deviation Std. Error Mean 

Pair1 CONTROL_DELAY_AM_BE 26.889 55 7.5660 1.0202 
FORE 

CONTROL_DELAY_AM_AF 2 3.771 55 8.0077 1.0798 
TER 

Paired Samples Correlations 

Significance 
N Correlation One-Sided p Two-Sided p 

Pair 1 CONTROL_DELAY_AM_BE 55 .230 .046 .091 

Pair1 

Pair1 

FORE & 
CONTROL_DELAY_AM_AF 
TER 

CONTROL_DELAY_AM_BE 
FORE· 
CONTROL_DELAY_AM_AF 
TER 

CONTROL_DELAY_AM_BE 
FORE· 
CONTROL_DELAY_AM_AF 
TER 

Paired Samples Test 

Paired Differences 

95% Confidence Interval of the 
Difference 

Mean Std. Deviation Std. Error Mean Lower Upper 

3.1182 9.6695 1.3038 .5042 5.7322 

Paired Samples Effect Sizes 

95% Confidence Interval 

Standardizer' Point Estimate Lower Upper 

Cohen's d 9.6695 .322 .050 .592 

Hedges' correction 9.8064 .318 .049 .584 

Significance 

df One-Sided p Two-Sided p 

2.392 54 .010 .020 

Appendix A: SPSS Output 

Figure 41. SPSS Output for Control Delay for AM Peak 
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T-Test 

Paired Samples Statistics 

Mean N Std. Deviation Std. Error Mean 

Pair 1 CONTROL_DELAY]M_B 24.660 55 6.5379 .8816 
EFORE 

CONTROL_DELAY]M_AF 20.989 55 5.3321 .7190 
TER 

Paired Samples Correlations 

Pair 1 CONTROL_DELAY]M_B 
EFORE & 
CONTROL_DELAY_PM_AF 
TER 

N Correlation 

55 .166 

Significance 
One-Sided p Two-Sided p 

.113 .225 

Paired Samples Test 

Paired Differences 

95% Confidence Interval of the 
Difference 

Pair 1 CONTROL_DELAY]M_B 
EFORE • 
CONTROL_DELAY_PM_AF 
TER 

Mean Std. Deviation Std. Error Mean 

3.6709 7.7190 1.0408 

Paired Samples Effect Sizes 

Lower Upper 

1.5842 5.7576 

95% Confidence Interval 

Standardizer' Point Estimate Lower Upper 

Pair 1 CONTROL_DELAY_PM_B Cohen's d 
EFORE • 
CONTROL_DELAY]M_AF Hedges' correction 
TER 

a. The denominator used in estimating the effect sizes. 

7.7190 

7.8283 

Cohen's d uses the sample standard deviation of the mean difference. 

.476 

.469 

.195 

.192 

Hedges' correction uses the sample standard deviation of the mean difference, plus a correction factor. 

.753 

.742 

Significance 

df One-Sided p Two-Sided p 

3.527 54 <.001 < 001 

Figure 42. SPSS Output for Control Delay for PM Peak 
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Samples Statistics 

Mean N Std. Deviation Std. Error Mean 

Pair 1 APPROACH_DELAY _AM_B 24.395 55 6.8379 .9220 
EFORE 

APPROACH_DELAY_AM_A 22.798 55 73725 .9941 
FTER 

-
Paired Samples Correlations 

Significance 
N Correlation One-Sided p Two-Sided p 

Pair 1 APPROACH_DELAY_AM_B 55 .884 <.001 <.001 
EFORE & 
APPROACH_DELAY_AM_A 
FTER 

Paired Samples Test 

Paired Differences Significance 

95% Confidence Interval of the 
Difference 

Mean Std. Deviation Std. Error Mean Lower Upper df One-Sided p Two-Sided p 

Pair 1 APPROACH_DELAY_AM_B 1.5964 3.4552 .4659 .6623 2.5304 3.426 54 <.001 .001 
EFORE • 
APPROACH_DELAY_AM_A 
FTER 

Paired Samples Effect Sizes 

95% Confidence Interval 

Standardizer' Point Estimate Lower Upper 

Pair 1 APPROACH_DELAY_AM_B Cohen's d 3.4552 .462 .182 .738 
EFORE • 
APPROACH_DELAY_AM_A Hedges' correction 3.5041 .456 .179 .728 
FTER 

a. The denominator used in estimating the effect sizes. 
Cohen's d uses the sample standard deviation of the mean difference. 
Hedges' correction uses the sample standard deviation of the mean difference, plus a correction factor. 

Figure 43. SPSS Output for Approach Delay for AM Peak 
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Samples Statistics 

Mean N Std. Deiiation Std. Error Mean 

Pair 1 APPROACH_DELAY_pM_B 24.293 55 10.8882 1.4682 
EFORE 

APPROACH_DELAY_pM_A 22.764 55 11.2397 1.5156 
FTER 

Paired Samples Correlations 

Significance 

N Correlation One-Sided p Two-Sided p 

Pair 1 APPROACH_DELAY_pM_B 
EFORE & 
APPROACH_DELAY_pM_A 
FTER 

55 .897 <.001 <.001 

Paired Samples Test 

P,ired Differences 

95% Confidence lntel\lal of the 
Difference 

Mean Std. Deviation Std. Error Mean Lower Upper 

Pair 1 APPROACH_DELAY_pM_B 
EFORE· 
APPROACH_DELAY_pM_A 
FTER 

1.5291 5.0305 .6783 

Paired Samples Effect Sizes 

.1692 2.8890 

95% Confidence lntel\lal 

Standardim' Point Estimate Lower Upper 

Pair 1 APPROACH_DELAY_PM_B Cohen's d 
EFORE • 
APPROACH_DELAY_pM_A Hedges' correction 
FTER 

:::i ThP. rlP.nnmin:::itnr tJSP.rl in P.stim:::itinn thA P.ffP.r.t si1P.s 

5.0305 

5.1 0t 7 

.304 

.300 

.032 

.032 

.573 

.565 

Significance 

di One-Sided p Two-Sided p 

2.254 54 .014 .028 

Figure 44. SPSS Output for Approach Delay for PM Peak 
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samples Stat1st1cs 

Mean N Std. Deviation Std. Error Mean 

Pair 1 BEFORE 25.77 45 

AFTER 22.3800 

110 

110 

7.12663 

6.91415 

.67950 

.65924 

Paired Samples Correlations 

Pair 1 BEFORE &AFTER 

Significance 
N Correlation One-Sided p Two-Sided p 

110 .230 .008 .016 

Paired Samples Test 

Paired Differences 

95% Confidence Interval of the 
Difference 

Mean Std. Deviation Std. Error Mean Lower Upper 

Pair 1 BEFORE-AFTER 3.39455 8.71295 .83075 174803 5.04106 

Paired Samples Effect Sizes 

95% Confidence Interval 

Standardizer1 Point Estimate Lower Upper 

Pair 1 BEFORE· AFTER Cohen's d 

Hedges' correction 

8.71295 

8.77348 

a. The denominator used in estimating the effect sizes. 
Cohen's d uses the sample standard deviation of the mean difference. 

.390 

.387 

.195 

.194 

Hedges' correction uses the sample standard deviation of the mean difference, plus a correction 
factor. 

.583 

.579 

Significance 

df One-Sided p Two-Sided p 

109 <,001 <,001 

Figure 45. SPSS Output for Paired Sample T-Test of Intersection Delays 
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rGIIC\I ~Qlllt'IC~ ~\Ql.l~U\,~ 

Mean N Std. Deviation Std. Error Mea□ 
Before 24.30991 111 9.015592 .855722 

Atter 22.76577 111 9.419414 .894051 

Paired samples Correlations 

Significance 
N co,relation One-Sided p Two-Sided p 

Pair 1 Before & Afler 111 .893 <.001 <.001 

Mean 

Pair 1 Before-Afler 1.544144 

Paired Samples Test 

Paired Differences 

Std. Deviation Std. Error Mean 

4.280520 .406289 

95% Confidence Interval of the 
Difference 

Lower Upper 

.738975 2.349314 

Paired samples Effect Sizes 

95% Confidence Interval 

Standardizera Point Estimate Lower Upper 

Pair 1 Before -Afler Cohen's d 4.280520 .361 .168 .552 

Hedges' correction 4.309984 .358 .167 .548 

a. The denominator used in estimating the effect sizes. 
Cohen's d uses the sample standard deviation of the mean difference. 
Hedges' correction uses the sample standard deviation of the mean difference, plus a correction 
factor. 

Significance 

df One-Sided p Two-Sided p 

3.801 110 <.001 <.001 

Figure 46. SPSS Output for Paired Sample T-Test of Approach Delays 
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Table 18. Multiple Regression Analysis Model Summary 

Change Statistics 

R R-Squared Adjusted 
Squared 

R- Std. Error of the 
Estimate 

R Square 
Change 

F Change df1 

0.321 0.103 0.098 44.552 .103 19.112 6 

Table 19. Multiple Regression Analysis Coefficients Table 

Unstandardized 
Coefficients 

Standardized Coefficients 

B Std. Error Beta t Sig. 

(Constant) 53.968 9.156 5.894 .000 

Length of Route, X1 .040 .004 .320 10.184 .000 

Average Dwell Time, X2 .236 .048 .157 4.950 .000 

Bus Direction, X3 -8.312 3.653 -.089 -2.275 .023 

Presence of Bus Lane X4 3.968 2.974 .040 1.334 .182 

Peak Period, X5 6.200 3.048 .063 2.034 .042 

Bus Compliance, X6 .025 .076 .013 .327 .743 
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Table 20. Travel Time Residuals Statistics Table 

Minimum Maximum Mean Std. 
Deviation 

N 

Predicted Value 62.84 235.25 111.50 15.064 1004 

Std. Predicted Value -3.230 8.215 .000 1.000 1004 

Standard Error of 
Predicted Value 

2.611 17.328 3.559 1.084 1004 

Adjusted Predicted Value 63.36 237.54 111.52 15.183 1004 

Residual -170.998 140.194 .000 44.419 1004 

Std. Residual -3.838 3.147 .000 .997 1004 

Stud. Residual -3.965 3.153 .000 1.001 1004 

Deleted Residual -182.532 140.810 -.019 44.815 1004 

Stud. Deleted Residual -3.995 3.167 .000 1.003 1004 

Mahal. Distance 2.445 150.725 5.994 7.862 1004 

Cook's Distance .000 .152 .001 .006 1004 

Centered Leverage Value .002 .150 .006 .008 1004 
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Appendix B: Bus Lane Usage “Before” and “After” 
Tally Summary 

Table 21. Summary of Bus Lane Usage Operation for “Before” Data (May 2019) 

H Street and 14th Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM May 7th 0 0 15.79 19.89 84.21 

May 8th 0 0 16.51 21.19 83.49 

May 9th 0 0 21.43 18.75 78.57 

May 
14th 

0 2 13.41 19.69 86.59 

May 
15th 

0 0 10.20 19.75 89.80 

May 
16th 

0 0 8.33 19.66 91.67 

PM May 7th 0 0 23.97 18.13 76.03 

May 8th 0 0 23.93 15.01 76.07 

May 9th 0 0 19.35 14.82 80.65 

May 
14th 

0 13 16.56 13.83 83.44 

May 
15th 

0 0 1.56 12.98 98.44 
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I I I I I I 

May 
16th 

0 0 0 11.60 100 

H Street and 17th Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM May 7th 0 3 6.32 4.30 93.68 

May 8th 0 3 6.85 5.18 93.15 

May 9th 0 2 10.14 5.36 89.86 

May 
14th 

0 4 12.64 5.67 87.36 

May 
15th 

0 3 15.29 5.68 84.71 

May 
16th 

0 3 22.09 7.77 77.91 

PM May 7th 0 8 2.82 9.18 97.18 

May 8th 0 6 3.95 8.66 96.05 

May 9th 0 5 0 7.57 100 

May 
14th 

0 10 5.88 9.64 94.12 

May 
15th 

0 12 3.85 10.39 96.15 

May 
16th 

7 12 6.93 11.15 93.07 
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I Street and Vermont Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM May 7th 0 0 52.55 16.98 47.45 

May 8th 0 1 47.06 22.96 52.94 

May 9th 0 0 3.19 19.24 96.81 

May 
14th 

39 0 60.61 20.10 39.39 

May 
15th 

52 4 54.70 15.32 45.30 

May 
16th 

22 6 63.86 17.26 36.14 

PM May 7th 0 7 62.12 22.27 37.88 

May 8th 0 4 63.19 25.55 36.81 

May 9th 0 3 64.44 21.41 35.56 

May 
14th 

22 27 42.62 22.36 57.38 

May 
15th 

47 63 46.58 20.05 53.42 

May 
16th 

29 167 52.48 20.82 47.52 

I Street and 16th Street, NW 
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Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM May 7th 0 0 29.65 14.72 70.35 

May 8th 0 0 29.27 16.97 70.73 

May 9th 0 0 31.11 20.51 68.89 

May 
14th 

5 5 32.85 15.75 67.15 

May 
15th 

13 42 17.16 7.26 82.84 

May 
16th 

6 1 24.85 13.91 75.15 

PM May 7th 0 0 37.44 16.15 62.56 

May 8th 0 8 36.07 17.73 63.93 

May 9th 0 4 33.95 16.97 66.05 

May 
14th 

13 8 37.76 12.19 62.24 

May 
15th 

11 58 37.68 16.87 62.32 

May 
16th 

12 61 31.40 17.65 68.60 

I Street and 17th Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 
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AM May 7th 0 11 40.91 4.27 59.09 

May 8th 1 0 40.94 10.19 59.06 

May 9th 1 0 39.86 9.49 60.14 

May 
14th 

4 9 59.05 19.43 40.95 

May 
15th 

3 113 65.45 12.42 34.55 

May 
16th 

4 4 65.18 11.01 34.82 

PM May 7th 1 0 48.47 6.95 51.53 

May 8th 0 0 37.89 8.10 62.11 

May 9th 0 4 43.52 8.13 56.48 

May 
14th 

3 13 68.84 11.58 31.16 

May 
15th 

4 13 71.20 14.69 28.80 

May 
16th 

3 6 63.36 6.71 36.64 
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Table 22. Summary of Bus Lane Usage Operation for “Before” Data (June 2019) 

H Street and 14th Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM June 11th 0 0 15.79 19.89 84.21 

June 12th 0 0 16.51 21.19 83.49 

June 13th 0 0 21.43 18.75 78.57 

June 18th 0 2 13.41 19.69 86.59 

June 19th 0 0 10.20 19.75 89.80 

June 20th 0 0 8.33 19.66 91.67 

PM June 11th 0 0 23.97 18.13 76.03 

June 12th 0 0 23.93 15.01 76.07 

June 13th 0 0 19.35 14.82 80.65 

June 18th 0 13 16.56 13.83 83.44 

June 19th 0 0 1.56 12.98 98.44 

June 20th 0 0 0 11.60 100 

H Street and 17th Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM June 11th 0 0 40.45 3.78 59.55 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

June 12th 0 0 50 5.24 50 

June 13th 0 0 49.41 6.15 50.59 

June 18th 0 0 61.82 8.74 38.18 

June 19th 0 3 62.16 7.78 37.84 

June 20th 0 9 62.86 3.59 37.14 

PM June 11th 0 0 37.89 10.12 62.11 

June 12th 0 0 34.62 12.41 65.38 

June 13th 0 0 38.83 11.07 61.17 

June 18th 0 0 56.06 15.04 43.94 

June 19th 0 12 57.89 13.02 42.11 

June 20th 0 6 46.97 9.36 53.03 

I Street and Vermont Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM June 11th 0 0 52.55 16.98 47.45 

June 12th 0 1 47.06 22.96 52.94 

June 13th 0 0 3.19 19.24 96.81 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

June 18th 39 0 60.61 20.10 39.39 

June 19th 52 4 54.70 15.32 45.30 

June 20th 22 6 63.86 17.26 36.14 

PM June 11th 0 7 62.12 22.27 37.88 

June 12th 0 4 63.19 25.55 36.81 

June 13th 0 3 64.44 21.41 35.56 

June 18th 22 27 42.62 22.36 57.38 

June 19th 47 63 46.58 20.05 53.42 

June 20th 29 167 52.48 20.82 47.52 

I Street and 16th Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM June 11th 0 0 29.65 14.72 70.35 

June 12th 0 0 29.27 16.97 70.73 

June 13th 0 0 31.11 20.51 68.89 

June 18th 5 5 32.85 15.75 67.15 

June 19th 13 42 17.16 7.26 82.84 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

June 20th 6 1 24.85 13.91 75.15 

PM June 11th 0 0 37.44 16.15 62.56 

June 12th 0 8 36.07 17.73 63.93 

June 13th 0 4 33.95 16.97 66.05 

June 18th 13 8 37.76 12.19 62.24 

June 19th 11 58 37.68 16.87 62.32 

June 20th 12 61 31.40 17.65 68.60 

I Street and 17th Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM June 11th 0 11 40.91 4.27 59.09 

June 12th 1 0 40.94 10.19 59.06 

June 13th 1 0 39.86 9.49 60.14 

June 18th 4 9 59.05 19.43 40.95 

June 19th 3 113 65.45 12.42 34.55 

June 20th 4 4 65.18 11.01 34.82 

PM June 11th 1 0 48.47 6.95 51.53 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal Turns 
on Red 

Number of 
blocking the 
box incidents 

Permitted 
Vehicles in 
Bus Lane (%) 

Non-Permitted 
Vehicles in Bus 
Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

June 12th 0 0 37.89 8.10 62.11 

June 13th 0 4 43.52 8.13 56.48 

June 18th 3 13 68.84 11.58 31.16 

June 19th 4 13 71.20 14.69 28.80 

June 20th 3 6 63.36 6.71 36.64 
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Table 23. Summary of Bus Lane Usage Operation for “After” Data (September 2019) 

H Street and 14th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM September 
17th 

0 0 51.16 16 88.14 

September 
18th 

0 0 72.97 14.14 91.38 

September 
19th 

0 0 41 15.59 88 

September 
24th 

0 2 22.11 18.81 80.83 

September 
25th 

0 0 46.82 15.70 86.21 

September 
26th 

0 1 47.06 18.17 82.30 

PM September 
17th 

0 0 68.57 13.55 98.60 

September 
18th 

0 0 47.37 14.06 91.60 

September 
19th 

0 0 42.62 17.97 91.91 

September 
24th 

0 11 52.94 9.54 87.41 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

September 
25th 

0 20 52.30 8.35 85.32 

September 
26th 

0 24 50.00 10.66 85.25 

H Street and 17th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM September 
17th 

0 0 27.14 3.78 59.55 

September 
18th 

0 0 17.91 5.24 50 

September 
19th 

0 0 19.44 6.15 50.59 

September 
24th 

0 0 37.50 8.74 38.18 

September 
25th 

0 3 46.29 7.78 37.84 

September 
26th 

0 9 29.66 3.59 37.14 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

PM September 
17th 

0 0 10.00 10.12 62.11 

September 
18th 

0 0 12.00 12.41 65.38 

September 
19th 

0 0 8.77 11.07 61.17 

September 
24th 

0 0 14.54 15.04 43.94 

September 
25th 

0 12 21.74 13.02 42.11 

September 
26th 

0 6 13.41 9.36 53.03 

I Street and Vermont Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM September 
17th 

41 20 47.33 14.28 27.27 

September 
18th 

41 30 57.19 13.20 25.13 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

September 
19th 

42 26 39.43 11.78 25.65 

September 
24th 

11 1 40.27 15.72 22.22 

September 
25th 

48 4 44.63 15.95 27.83 

September 
26th 

2 4 45.77 14.56 17.07 

PM September 
17th 

15 78 64.62 13.87 42.74 

September 
18th 

18 133 74.03 18.39 34.71 

September 
19th 

41 98 77.62 14.23 35.42 

September 
24th 

2 10 72.09 17.90 46.34 

September 
25th 

69 21 72.09 19.62 24.07 

September 
26th 

14 20 72.09 20.37 26.79 

I Street and 16th Street, NW 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  113 



 

    

      

    
 
  

 

  
  

 
 

 
 

 
 

 
  
  

  
  

 

    
 
  

 

  
  

 
 

 
 

 
 

 
  
  

  
  

 

  
  

     

 
 

      

 
  

     

 
  

     

 
  

     

 
 

     

  
  

     

 
 

     

 
  

     

H Street and 14th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM September 
17th 

2 4 60.71 15.22 47.87 

September 
18th 

1 3 62.81 17.47 47.59 

September 
19th 

3 12 65.05 15.87 38.76 

September 
24th 

1 5 65.31 16.81 40.35 

September 
25th 

9 23 56.00 15.41 45.60 

September 
26th 

7 0 66.96 18.06 36.31 

PM September 
17th 

1 39 64.00 14.56 46.76 

September 
18th 

2 69 72.37 21.56 29.51 

September 
19th 

5 40 78.83 17.74 37.33 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

September 
24th 

23 0 72.66 17.39 35.68 

September 
25th 

2 9 69.23 20.82 35.71 

September 
26th 

8 65 77.12 26.29 35.24 

I Street and 17th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM September 
17th 

1 5 58.62 5.36 22.52 

September 
18th 

0 10 63.78 6.83 27.59 

September 
19th 

0 4 52.89 6.46 25.93 

September 
24th 

0 0 51.69 8.28 20.49 

September 
25th 

0 1 59.09 8.76 37.40 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

September 
26th 

0 0 57.94 8.63 33.10 

PM September 
17th 

1 3 74.51 5 21.85 

September 
18th 

1 5 69.81 5.12 25.62 

September 
19th 

1 4 67.65 2.96 27.07 

September 
24th 

0 0 63.45 8.47 15.86 

September 
25th 

0 6 69.40 6.24 48.99 

September 
26th 

1 1 70.80 7.57 19.08 
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Table 24. Summary of Bus Lane Usage Operation for “After” Data (October 2020) 

H Street and 14th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM October 13th 0 0 37.78 16 88.14 

October 14th 0 0 28.57 14.14 91.38 

October 15th 0 0 30 15.59 88 

October 20th 0 2 26.32 18.81 80.83 

October 21st 0 0 23.68 15.70 86.21 

October 22nd 0 1 27.78 18.17 82.30 

PM October 13th 0 0 39.58 13.55 98.60 

October 14th 0 0 37.04 14.06 91.60 

October 15th 0 0 31.71 17.97 91.91 

October 20th 0 11 36.17 9.54 87.41 

October 21st 0 20 31.91 8.35 85.32 

October 22nd 0 24 36.58 10.66 85.25 

AM October 13th 0 0 3.85 3.78 59.55 

October 14th 0 0 8.51 5.24 50 

October 15th 0 0 4.54 6.15 50.59 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

October 20th 0 0 2.22 8.74 38.18 

October 21st 0 3 8.33 7.78 37.84 

October 22nd 0 9 11.32 3.59 37.14 

PM October 13th 0 0 6.52 10.12 62.11 

October 14th 0 0 4.44 12.41 65.38 

October 15th 0 0 8.16 11.07 61.17 

October 20th 0 0 2.00 15.04 43.94 

October 21st 0 12 10.42 13.02 42.11 

October 22nd 0 6 8.69 9.36 53.03 

I Street and Vermont Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM October 13th 41 20 63.71 14.28 27.27 

October 14th 41 30 72.17 13.20 25.13 

October 15th 42 26 64.17 11.78 25.65 

October 20th 11 1 55.08 15.72 22.22 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

October 21st 48 4 48.80 15.95 27.83 

October 22nd 2 4 55.74 14.56 17.07 

PM October 13th 15 78 66.14 13.87 42.74 

October 14th 18 133 67.19 18.39 34.71 

October 15th 41 98 60.90 14.23 35.42 

October 20th 2 10 68.22 17.90 46.34 

October 21st 69 21 61.36 19.62 24.07 

October 22nd 14 20 61.03 20.37 26.79 

I Street and 16th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM October 13th 2 4 0.00 15.22 47.87 

October 14th 1 3 0.00 17.47 47.59 

October 15th 3 12 0.00 15.87 38.76 

October 20th 1 5 0.00 16.81 40.35 

October 21st 9 23 0.00 15.41 45.60 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

October 22nd 7 0 0.00 18.06 36.31 

PM October 13th 1 39 0.00 14.56 46.76 

October 14th 2 69 0.00 21.56 29.51 

October 15th 5 40 1.28 17.74 37.33 

October 20th 23 0 0.00 17.39 35.68 

October 21st 2 9 0.00 20.82 35.71 

October 22nd 8 65 0.00 26.29 35.24 

I Street and 17th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

AM October 13th 1 5 46.39 5.36 22.52 

October 14th 0 10 44.56 6.83 27.59 

October 15th 0 4 30.48 6.46 25.93 

October 20th 0 0 41.84 8.28 20.49 

October 21st 0 1 38.68 8.76 37.40 

October 22nd 0 0 35.96 8.63 33.10 
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H Street and 14th Street, NW 

Peak Date Number of 
Illegal 
Turns on 
Red 

Number of 
blocking the 
box 
incidents 

Permitted 
Vehicles in 
Bus Lane 
(%) 

Non-
Permitted 
Vehicles in 
Bus Lane (%) 

Buses in Other 
Travel Lanes 
(%) 

PM October 13th 1 3 53.47 5 21.85 

October 14th 1 5 41.00 5.12 25.62 

October 15th 1 4 51.65 2.96 27.07 

October 20th 0 0 44.79 8.47 15.86 

October 21st 0 6 37.00 6.24 48.99 

October 22nd 1 1 33.67 7.57 19.08 
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Appendix C: Neural Designer Output 
Error Plots (Neural Designer Output): 

Figure 47. Quasi-Newton Method Error History Plot with Two Perceptron Layers Before 
Order Selection 
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Figure 48. Incremental Order Error Plot 

Table 25. Summary of Incremental Order Results 

Value 

Optimal Order 1 

Optimum Training Error 0.984 

Optimum Selection Error 0.994 

Iterations Number 10 

Elapsed Time 00:42 
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Table 26. Summary of Travel Time Error Statistics 

Minimum Maximum Mean Deviation 

Absolute Error 0.025 341.354 42.032 42.687 

Percentage Error 0.005 62.634 7.712 7.832 

Table 27. Summary of Errors Table 

Training Selection Testing 

Sum Squared Error 2.899e+06 798822 748262 

Mean Squared Error 4623.52 3822.12 3580.2 

Root Mean Squared Error 67.997 61.823 59.835 

Normalized Squared Error 0.984 0.995 0.973 

Minkowski Error 273525 81041.1 74677.6 
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Appendix D: Neural Network Bus Travel Time Equation 
Bus Travel Time Equation Obtained from Neural Network Analyses (Neural Designer Output): 

Travel Time = 0.5*(Scaled_Y+1)*545 

Where, 

Scaled_Y = (-0.65213+ (y_1_1*0.181863)); 

y_1_1 = tanh (0.0965609 + (scaled_LengthofRoute,X1*0.120817)+ 
(scaled_AverageDwellTime,X2*-0.093415) + (scaled_BusDirection,X3*0.0850154) + 
(scaled_PresenceofBusLaneX4*-0.0552354) + (scaled_PeakPeriod,X5*-0.128569) + 
(scaled_BusCompliance,X6*-0.00506434)); 

scaled_LengthofRoute,X1 = (LengthofRoute,X1-24661300)/324664000; 

scaled_AverageDwellTime,X2 = (AverageDwellTime,X2-8243720)/188076000; 

scaled_BusDirection,X3 = (BusDirection,X3-0.495677)/0.500222; 

scaled_PresenceofBusLane,X4 = (PresenceofBusLane,X4-0.339731)/0.473845; 

scaled_PeakPeriod,X5 = (PeakPeriod,X5-0.342282)/0.474701; 

scaled_BusCompliance,X6 = (BusCompliance,X6-43.7824)/23.7344; 
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